Сравнительный анализ методов прогнозирования временных рядов на основе нейронных сетей и регрессионного анализа

Основное содержимое статьи

А.Н. Аверкин
С.А. Ярушев

Аннотация

В статье рассматриваются два основных направления в прогнозировании временных рядов, а именно, нейросетевые методы прогнозирования и методы на основе регрессионного анализа. Производится сравнение результатов прогноза на примере отдельных показателей, произведенных на основе двух методов. Анализируются основные проблемы, возникающие при использовании данных методов, а так же методы их решения, в частности гибридизация данных методов. Проводится широкий обзор исследований по сравнению прогностической производительности методов на основе искусственных нейронных сетей и других методов прогнозирования. Особое внимание уделяется сравнению методов ИНС и методов множественной регрессии. 

Скачивания

Данные скачивания пока недоступны.

Информация о статье

Как цитировать
[1]
Аверкин, А. и Ярушев, С. 2021. Сравнительный анализ методов прогнозирования временных рядов на основе нейронных сетей и регрессионного анализа . Системный анализ в науке и образовании. 2 (сен. 2021), 34–49.
Раздел
Статьи

Библиографические ссылки

Widrow, B., Rumelhart, D., & Lehr, M. A. Neural networks: Applications in industry, business and science.// Stanford University. Communications of the ACM, 1994 – Vol.37 - №3

Chung et al., P.C. Chang, Y.W. Wang and C.H. Liu, The development of a weighted evolving fuzzy neural network for PCB sales forecasting, Expert Systems with Applications, 2007 - 32, pp. 86–96.

Hwang, H. B. Insights into neural-network forecasting of time series corresponding to ARMA (p, q) structures. Omega, 2001 - 29, 273-289.

Medeiros, M. C. & Pedreira, C. E. What are the effects of forecasting linear time series with neural networks? Engineering Intelligent Systems, 2001 - 237-424.

Zhang, G. P. An investigation of neural networks for linear time-series forecasting. Computers & Operations Research, 2001 - 28, 1183-1202.

Armstrong, J. S. Research needs in forecasting. International Journal of Forecasting, 1988 - 4, 449-465.

Makridakis, S., Anderson, A., Carbone, R., Fildes, R., Hibdon, M,. Lewandowski, R., Newton, J., Parzen, E., & Winkler, R. The accuracy of extrapolation (time series) methods: Results of a forecasting competition. Journal of Forecasting, 1982 - 1(2), 111-153.

Ritanjali Majhi and Panda, Ritanjali Majhi, & Panda, G.. Stock market prediction of S&P 500 and DJIA using bacterial foraging optimization technique. In 2007 IEEE congress on evolutionary computation, 2007 - pp. 2569–2579.

Tan et al., 2005 Tan, T. Z., Quek, C., & Ng, G. S. Brain inspired genetic complimentary learning for stock market prediction. In IEEE congress on evolutionary computation, 2–5th September, 2005 - Vol. 3, pp. 2653–2660.

Oh and Kim, 2002 K.J. Oh and K.-J. Kim, Analyzing stock market tick data using piecewise non linear model, Expert System with Applications, 2002 - №3, pp. 249–255

Miao et al., K. Miao, F. Chen and Z.G. Zhao, Stock price forecast based on bacterial colony RBF neural network, Journal of QingDao University, 2007 - №20, pp. 50–54 (in Chinese).

Wang, Y. Wang, Mining stock prices using fuzzy rough set system, Expert System with Applications, 2003 - №1, pp. 13–23.

Pino et al., R. Pino, J. Parreno, A. Gomez and P. Priore, Forecasting next-day price of electricity in the Spanish energy market using artificial neural networks, Engineering Applications of Artificial Intelligence, 2008 - №21, pp. 53–62.

Китова О.В., Колмаков И.Б., Потапов С.В., Шарафутдинова А.Р. Системы моделей краткосрочного прогноза показателей социально-экономического развития РФ. РЭУ им. Г.В. Плеханова – М., 2014.

Schocken, S. and Ariav, G., `Neural networks for decision support: problems and opportunities', Decision Support Systems, 1994 - №11, Pp. 393-414.

Lippmann, R. P., `An introduction to computing with neural nets', IEEE ASSP Magazine, 1987 - №4- 21.

Wilson, R. L. and Sharda, R., `Bankruptcy prediction using neural networks', Decision Support Systems, 1994 - №11, Pp. 545-557.

Tam, K. Y. and Kiang, M. Y., `Managerial applications of neural networks: the case of bank failure predictions', Management Science, 1992 - №38, 7, Pp. 926-947.

Salchenberger, L. M., Cinar, E. M. and Lash, N. A., `Neural networks: a new tool for predicting thrift failures', Decision Sciences, 1992 - №23, Pp. 899-916.

Coats, P. K. and Fant, L. F., `A neural network approach to forecasting financial distress', The Journal of Business Forecasting, 1992, Winter, Pp. 9-12.

Refenes, A. N., Azema-Barac, M. and Zapranis, A. D., `Stock ranking: neural networks vs multiple linear regression', IEEE International Conference on Neural Networks, 1993, Pp. 1419-1426.

Ho, K. L., Hsu, Y. Y. and Yang, C. C., `Short term load forecasting using a multilayer neural network with an adaptive learning algorithm', IEEE Transactions on Power Systems, 1992 - №7, 1, Pp. 141-149.

Foster, W. R., Collopy, F. and Ungar, L. H., `Neural network forecasting of short, noisy time series', Computers in Chemical Engineering, 1992 - №16, 4, Pp. 293-297.

Connor, J., Martin, R. D. and Atlas, L. E., `Recurrent neural networks and robust time series prediction', IEEE Transactions on Neural Networks, 1994 - №5, 2, Pp. 240-254.

Dutta, S., Shekhar, S.. and Wong, W. Y., `Decision support in non-conservative domains: generalization with neural networks', Decision Support Systems, 1994 - №11, Pp. 527-544.

Lee, J. K. and Jhee, W. C., `A two-stage neural network approach for ARMA model identification with ESACF', Decision Support Systems, 1994 - №11, Pp. 461-479.

Fletcher, D. and Goss, E., `Forecasting with neural networks: an application using bankruptcy data', Information & Management, 1993 - №24, Pp. 159-167.

DeSilets, L., Golden, B., Wang, Q. and Kumar, R., `Predicting salinity in Chesapeake Bay using backpropagation', Computers & Operations Research, 1992 - №19, 3/4, Pp. 277-285.

Kimoto, T., Asakawa, K., Yoda, M. and Takeoka, M., `Stock market prediction system with modularneural networks', IEEE/INNS International Joint Conference on Neural Networks, 1990, №I, Pp. 1-6.

Yoon, Y., Swales, G. and Margavio, T. M., `A comparison of discriminant analysis vs arti®cial neural networks', Journal of Operational Research Society, 1993 - №44, 1, Pp. 51-60.

Chen, S. T., Yu, D. C. and Moghaddamjo, A. R., `Weather sensitive short-term load forecasting using nonfully connected arti®cial neural network', IEEE Transactions on Power Systems, 1992 - №7, 3, Pp.1098-1105.

Park, D. C., El-Sharkawi, M. A., Marks II, R. J., Atlas, L. E. and Damborg, M. J., `Electric load forecasting using an artificial neural network', IEEE Transactions on Power Systems, 1991 - №6, 2, Pp. 442- 449.

Tang, Z., de Almeida, C. and Fishcwick, P. A., `Time series forecasting using neural networks vs. BoxJenkins methodology', Simulation, 1991 - №57, 5, Pp. 303-310.

Monica, A., Collopy, F., How effective are Neural Networks at Forecasting and Prediction? A review and evaluation.//Journal of Forecasting, J. Forecast, 1998 – №17 – Pp. 481-495.

Grossberg, S., Neural Networks and Natural Intelligence, Cambridge, MA: The Mitt Press, 1988.

Refenes, A. N., `Neural network design considerations', in Refenes, A. N. (ed.), Neural networks in the Capital Market, New York: John Wiley, 1995.

Nguyen, N., Cripps, A., Predicting Housing Value: A comparison of multiple regression analysis and artificial neural networks.//JRER, 2001 - №3 – Pp. 314-336.

Tsukuda, J. and S-I. Baba, Predicting Japanese Corporate Bankruptcy in Terms of Financial Data Using Neural Networks, Computers & Industrial Engineering, 1994, 27:1-4, Pp. 445–48.

Do, Q. and G. Grudnitski, A Neural Network Approach to Residential Property Appraisal, The Real Estate Appraiser, 1992, 58, Pp. 38–45.

Allen, W. C. and J. K. Zumwalt, Neural Networks: A Word of Caution, Unpublished Working Paper, Colorado State University, 1994.

Grether, D. and P. Mieszkowski, Determinants of Real Values, Journal of Urban Economics, 1974, 1:2, Pp. 127–45.

Jones, W., M. Ferri and L. McGee, A Competitive Testing Approach to Models of Depreciation in Housing, Journal of Economics and Business, 1981, 33:3, Pp. 202–11.

Goodman, A. C. and T. G. Thibodeau, Age-Related Heteroskedasticity in Hedonic House Price Equations, Journal of Housing Research, 1995, 6, Pp. 25–42.

Kmenta, J., Elements of Econometrics, New York, NY: Macmillan Publishing, 1971.

Neter, Wasserman and Kutner, Applied Linear Statistical Models, Third edition., McGraw-Hill, 1990.

Hecht-Nielsen, R., Kolmogorov’s Mapping Neural Network Existence Theorem, Paper presented at IEEE First International Conference on Neural Networks, San Diego, CA, 1987.

Geman, S., E. Bienenstock and R. Doursat, Neural Networks and the Bias/Variance Dilemma, Neural Computation, 1992, 4, 1–58.

Goutte, C., Note on Free lunches and Cross-validation, Neural Computation, 1997, 9, 1211–15.

Baum, E. B. and D. Haussler, What Size Net Gives Valid Generalization?, Neural Computation, 1989, 1:1, 151–60.

Tay, D. P. H. and D. K. K. Ho, Artificial Intelligence and the Mass Appraisal of Residential Apartments, Journal of Property Valuation & Investment, 1991/1992, 10, 525–540.