Интеллектуальные самоорганизующиеся когнитивные регуляторы. Ч. 2: Модели когнитивных интерфейсов «мозг – устройство»
Основное содержимое статьи
Аннотация
Рассматриваются основные типы управляющих сигналов с коры головного мозга, методы регистрации и возможность их обработки на основе оптимизатора баз знаний на мягких вычислениях для формирования соответствующих баз знаний когнитивных регуляторов. Приведена схема когнитивного интерфейса «мозг – устройство» и примеры эффективного применения. Рассмотрена связь процессов проектирования когнитивных регуляторов с методами Kansei / Affective инженерии.
Скачивания
Информация о статье
Библиографические ссылки
Петров Б. Н., Уланов Г. М., Ульянов С. В., Хазен Э. М. Информационно-семантические проблемы в процессах управления и организации. – М.: Наука. – 1977.
Barchatova I. A., Ulyanov S. V. Intelligent robust control system based on quantum KB-selforganization: Quantum soft computing and Kansei / Affective engineering technologies // Proceedings of the 7 th IEEE International Conference Intelligent Systems IS'2014. – September 24 – 26, 2014. – Warsaw, Poland. – Vol. 2: Tools, Architectures, Systems, Applications. – Pp. 37-48.
Daly J. J., Wolpaw J. R. Brain–computer interfaces in neurological rehabilitation // Lancet Neurol. – 2008. – Vol. 7 – Pp. 1032-1043.
Nicolelis M. A. L, Lebedev M. A. Principles of neural ensemble physiology underlying the operation of brain–machine interfaces // Nature. – 2009. – Vol. 10. – Pp. 530-540.
Schalk G. Towards a clinically practical brain-computer interface // A Thesis Submitted to the Graduate Faculty of Rensselaer Polytechnic Institute in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Rensselaer Polytechnic Institute Troy. – New York. – December 2006.
Gu Y. Decoding of movement characteristics for brain computer interfaces application. – Ph.D. Dissertation. – Aalborg Universitet. – 2009.
Iqbal K. Brain-Computer interfaces in neurological rehabilitation. – Newcastle University. Essay Prize Submission. – British Society of Rehabilitation Medicine. – 2013.
Tan D. S., Nijholt A. (eds.). Brain-Computer interfaces // Human-Computer Interaction Series. – Springer-Verlag London Limited. – 2010.
Fazel-Rezai R. (ed.) Brain-Computer interface systems // Recent Progress and Future Prospects. Edited by R. Fazel-Rezai. – InTech. – 2013.
Guger C. et al. (eds.). Brain-Computer Interface Research // Springer Briefs in Electrical and Computer Engineering. – 2014.
Mohammad H. Alomari, Ayman AbuBaker, Aiman Turani, Ali M. Baniyounes, Adnan Manasreh EEG Mouse: A Machine Learning-Based Brain Computer Interface // (IJACSA) International Journal of Advanced Computer Science and Applications. – Vol. 5. – No. 4. – 2014. – Pp.192-198.
Lebedev M. A., Nicolelis M. A. L. Brain–machine interfaces: past, present and future // TRENDS in Neurosciences. – 2006. – Vol.29. – №9. – Pp. 536-545.
Рабинович М. И., Мюезинолу М. К. Нелинейная динамика мозга: эмоции и интеллектуальная деятельность // УФН. – 2010. – Т. 180. – № 4. – С. 371-387.
Nicolas-Alonso L. F., Gomez-Gil J. Brain computer interfaces, a Review // Sensors. – 2012. – Vol. 12. – Pp. 1211-1279.
Seungchan Lee, Younghak Shin, Soogil Woo, Kiseon Kim, Heung-No Lee Review of Wireless BrainComputer Interface Systems // Brain-Computer interface systems – Recent Progress and Future Prospects / Ed. by R. Fazel-Rezai. – InTech. – 2013. – Chapter 11(http://dx.doi.org/10.5772/56436).
Gonzalez A. R. Communication Technologies Based on Brain Activity // Int'l Conf. Bioinformatics and Computational Biology – BIOCOMP'10. – 2010. – Pp. 864-869.
Po-Lei Lee, Hsiang-Chih Chang, Tsung-Yu Hsieh, Hua-Ting Deng, Chia-Wei Sun. A Brain-WaveActuated Small Robot Car Using Ensemble Empirical Mode Decomposition-Based Approach // IEEE transactions on systems, man, and cybernetics – Part A: Systems and humans. – Vol. 42. – №5. – 2012. – Pp. 1053-1064.
Becedas J. Brain–Machine Interfaces: Basis and Advances // IEEE transactions on systems, man, and cybernetics – Part C: Applications and reviews. – Vol. 42. – №6. – 2012. – Pp. 825-836.
Anupama.H. S., Cauvery N. K., Lingaraju G. M. Brain computer interface and its types – a study // International Journal of Advances in Engineering & Technology. – 2012. – Vol. 3. – №2. – Pp. 739-745.
Devansh Sood, Arpit Gupta, Devansh Hans, Vishul Gupta. Brain Computer Interface & Artificial Intelligence // IJAKECS. – Vol. 1. – №1. – January- June 2013. – Pp.12-15.
Rajyalakshmi M., Rao T. K., Prasad T.V. Exploration of Recent Advances in the Field of Brain Computer Interface // archive Org: quant-ph. – 1302.2759.
K.-R. Muller. The Berlin Brain-Computer Interface (BBCI) – towards a new communication channel for online control in gaming applications // Multimed Tools Appl. – 2003.
N. Birbaumer, G. Leonardo. Cohen Brain–computer interfaces: communication and restoration of movement in paralysis // J Physiol 579.3 (2007). – Pp 621-636.
Franklin S., Madl T., D’Mello S., Snaider J. LIDA: A Systems-level Architecture for Cognition, Emotion, and Learning // IEEE transactions on autonomous mental development. – Vol. 6. – №1. – 2014. – Pp. 19-34.
Gandhi V., Prasad G.; Coyle D.; Behera L.; McGinnity T.M. EEG-Based mobile robot control through an adaptive Brain–Robot Interface // IEEE transactions on systems, man, and cybernetics – Part C: Applications andrReviews. – Issue 9. – Sept. 2014. – Pp. 1278-1285.
Ying Gu. Decoding of Movement Characteristics for Brain Computer Interfaces application. – Ph.D. Dissertation. – Aalborg Universitet. – 2009.
Kundan Iqbal. Brain-Computer Interfaces in neurological rehabilitation. Newcastle University. Essay Prize Submission. – British Society of Rehabilitation Medicine. – 2013.
Mohammad H. Alomari, Ayman AbuBaker, Aiman Turani, Ali M. Baniyounes, Adnan Manasreh. EEG Mouse: A Machine Learning-Based Brain Computer Interface // (IJACSA) International Journal of Advanced Computer Science and Applications. – Vol. 5. – №4. – 2014. – Pp.192-198.
CORBYS. Cognitive Control Framework for Robotic Systems (FP7 – 270219) // Deliverable D2.2 Detailed Specification of the System. Project Report, 31st October 2011.
Sungsu Kim. Cognitive Model-Based Autonomic Fault Management in SDN. Doctoral Thesis. Division of Electrical and Computer Engineering (Computer Science and Engineering). – Pohang University of Science and Technology. – 2013.