УДК 004.9, 378

ГИС-ТЕХНОЛОГИИ И ФОРМИРОВАНИЕ КОМПЕТЕНТНОСТНОГО ПОДХОДА

Крейдер Оксана Александровна

Кандидат технических наук, доцент Института системного анализа и управления; ГБОУ ВПО «Международный Университет природы, общества и человека «Дубна», Институт системного анализа и управления; 141980, Московская обл., г. Дубна, ул. Университетская, 19; e-mail: okrei@mail.ru.

В статье рассматривается задача повышения эффективности учебного процесса на основе применения современных достижений в области информационных систем и технологий, ГИС-технологий в частности, для формирования компетентностного подхода. Приводятся примеры работ студентов, выполненные в ГИС-системах.

<u>Ключевые слова:</u> информационные системы, информационные технологии, ГИС-технологии, компетенции.

GIS-TECHNOLOGIES AND FORMATION THE COMPETENCE APPROACH

Kreider Oksana

Candidate of Science in Engineering, Associate Professor of Institute of system analysis and management; Dubna International University of Nature, Society and Man, Institute of system analysis and management; 141980, Dubna, Moscow reg., Universitetskaya str., 19; e-mail: okrei@mail.ru

The article is devoted to the problem of improving efficiency of educational process on the basis of application of modern achievements in the field of information systems and technologies. GIS-technologies and formation the competence approach. Examples of works the students executed in GIS-systems are resulted.

<u>Keywords:</u> Information systems, information technologies, GIS-technologies, the competence.

Введение

Информационное общество ставит перед системой образования новые задачи:

- овладение способами непрерывного приобретения новых знаний и умения учиться самостоятельно;
- освоение навыков работы с любой информацией, с разнородными, противоречивыми данными, формирование навыков самостоятельного (креативного), а не репродуктивного типа мышления;
- дополнение традиционного принципа «формировать знания, умения и навыки» принципом «формировать компетентность».
- ориентация знаний на практическое применение.

В связи с этим одним из основных требований профессиональной подготовки специалистов в любой сфере деятельности является включение в учебный процесс не просто современных информационных инновационных технологий, а новых видов, которые создают реальные возможности для их использования в системе образования с целью формирования специальных компетенций у будущих специалистов.

Пример таких инновационных технологий – технологии геоинформационных систем (ГИС), которые являются современной интегрированной информационной технологией и эффективным инструментом не только для обучения, но и для решения широкого спектра прикладных задач.

1. Информационное общество и его требования

Ключевыми словами рядового современного человека являются такие как: информация, компьютер, интернет. Для людей, чья профессиональная деятельность тем или иным образом связана с этими понятиями, возникают понятия: информатизация, информационные технологии, ИТ-специалисты, информационный бизнес.

Это и не удивительно в информационном обществе, в котором по некоторым данным человечество существует и развивается уже несколько десятков лет. Цель такого общества состоит в улучшении качества жизни людей за счет повышения производительности и облегчения условий их труда. Для достижения подобной цели ставится задача создания интегрального интеллекта всей цивилизации, способного предвидеть и управлять развитием человечества. Но это глобально и в перспективе!

А на сегодняшний день весьма актуальной задачей становится выравнивание всего общества в области освоения, применения и развития достижений современных информационных технологий во всех сферах деятельности.

И начинать этот процесс целесообразно с обучения детей, подростков, которые в силу современности своей эпохе способны быстрее обучиться и адаптироваться к новой информационной среде. Таким образом, первой под волну преобразований попадает система образования.

Информационное общество ставит перед системой образования новые задачи:

- овладение способами непрерывного приобретения новых знаний и умения учиться самостоятельно;
- освоение навыков работы с любой информацией, с разнородными, противоречивыми данными, формирование навыков самостоятельного (креативного), а не репродуктивного типа мышления;
- дополнение традиционного принципа «формировать знания, умения и навыки» принципом «формировать компетентность».
- ориентация знаний на практическое применение.

Современный слушатель в совершенстве владеющий информационными технологиями, пригодными для общения, работы, обучения в любом месте, в любое время, в любом формате, как правило, является участником сетевого бизнес-сообщества.

Современные менеджеры, лучше воспринимают информацию в близких им высокотехнологичных парадигмах, таких как интернет, аудио и видео графика, гипертекст, вики, система обмена короткими сообщениями и т.д.

В последнее время многострадальная система образования испытывает постоянные эксперименты по улучшению уровня и качества образовательных услуг, которые дают противоречивые результаты. Неоспоримым остается только то, что меняется структура знаний, которые в конечном итоге должны получать учащиеся. Начиная с 80-х годов, сумма знаний в обществе возрастает вдвое каждые 2 года. Доля традиционных знаний уменьшается с 70 до 40%, прагматических — с 15 до 10%. И в то же время растет доля новых знаний — с 5 до 15% и знаний, направленных на развитие творческих способностей личности — с 3 до 25%. Таким образом, современная окружающая среда требует от человека как психологической, так и профессиональной подготовленности, что и должна обеспечить система образования.

В условиях радикального усложнения жизни общества, его технической и социальной инфраструктуры решающим оказывается изменение отношения людей к информации, которая уже давно является важнейшим стратегическим ресурсом общества.

Отсюда, эффективность процесса информатизации общества в целом непосредственно зависит от эффективности процессов создания и использования информационного ресурса, который фактически включает совокупность информации о прошлом и настоящем опыте человечества, являющейся

базой для воспроизводства новой информации с применением достижений в области информационных технологий.

Причем, важно отметить, что используемые в системе образования подходы и методы обучения должны обогащаться активно-деятельностными способами обучения на основе компетентностного подхода в рамках практико-ориентированного профессионального образования и, таким образом, повышать качество образования, под которым понимается способность образовательного процесса удовлетворять потребности обучающихся в таком уровне знаний, навыков, умений, который позволит им быть востребованными профессиональной средой, успешно адаптироваться в социальной жизни, быть полезным обществу.

В связи с этим одним из основных требований профессиональной подготовки специалистов в любой сфере деятельности является включение в учебный процесс не просто современных информационных инновационных технологий, а новых видов, которые создают реальные возможности для их использования в системе образования с целью формирования специальных компетенций у будущих специалистов.

Пример таких инновационных технологий – технологии геоинформационных систем (ГИС), которые являются современной интегрированной информационной технологией и эффективным инструментом не только для обучения, но и для решения широкого спектра прикладных задач. Главное преимущество ГИС технологий перед другими информационными системами заключается в сочетании набора средств создания и объединения баз данных с возможностями их географического анализа и наглядной визуализации в виде различных карт, графиков, диаграмм, прямой привязке друг к другу всех атрибутивных (описательных) и графических данных.

2. ГИС-технологии для формирования компетенций

В Международном университете природы, общества и человека «Дубна» накоплен определенный опыт использования ГИС-технологий в учебном процессе. Использование ГИС-технологий началось с 2000 года в рамках изучения дисциплины «Информатика», которая для студентов первого курса является базовой и направлена на обеспечение понимания роли современных средств информатики в разрешении проблемных ситуаций. Уже на первом курсе студенты учатся самостоятельно формировать задачи и находить их решения на основе использования интегрированных компьютерных технологий.

Имеющийся опыт преподавания геоинформационных дисциплин для различных сфер профессиональной деятельности позволил выделить наиболее эффективные принципы разработки методики обучения с применением ГИС-технологий:

- Использование активных методов и форм обучения с включением элементов проблемности, научного поиска, широкого использования резервов самостоятельной работы, т.е. другими словами, переход от «школы воспроизведения» к «школе понимания», «школе мышления».
- Организация обучения как коллективной, совместной деятельности обучающихся, где акцент переносится «с обучающей деятельности преподавателя на познающую деятельность студента».
- Формирование и развитие личностных качеств, основанное на дифференциации и индивидуализации, создании условий для полного проявления и развития способностей каждого обучающегося.
- Обеспечение операционно-технологической активности обучаемых, которая наиболее ярко проявляется в процессе формирования практических навыков работе с ГИС как с информационной системой, обеспечивающей формирование умений принимать решения в современной информационной среде.
- Характер учебных дисциплин, использующих в учебном процессе ГИС технологии и степень их дифференциации зависят от прикладной сферы, для которой идет подготовка специалиста.

Анализ номенклатуры информационно-управленческих специальностей в вузах показал, что геоинформационная система является незаменимым инструментом для менеджеров любого типа, так как на основе своевременных, достоверных сведений ГИС поможет смоделировать ситуацию, построить прогнозы, выявить и экстраполировать тенденции развития объектов, самостоятельно сделать умозаключения. В структуру методики формирования профессиональных компетенций на основе освоения дисциплин, использующих ГИС технологии включены следующие компоненты: цель, формируемые компетенции в результате освоения дисциплины, структура и содержание, образовательные технологии, оценочные средства, информационные ресурсы.

Компонент «цель» — приобретение студентами теоретических знаний и устойчивых навыков практической работы со средствами геоинформационных систем и технологий. В результате изучения курса студент должен овладеть знаниями, умениями и навыками в области обработки геоинформации, понимание места и роли применения геоинформационных технологий в природопользовании.

Для достижения этой цели определены задачи:

- обеспечить первоначальное принятие студентами идеи важности пространственного подхода;
- привить понимание будущими специалистами проблем организации пространства и умение работы с пространственными данными;
- дать представление студентам о возможностях геоинформационных технологий и формах их применения в профессиональной деятельности;
- сформировать профессиональные компетенции, включающие готовность осуществлять постановку и моделирование пространственных управленческих задач, упорядочивать, систематизировать, структурировать данные и знания, интерпретировать полученные результаты, предвидеть последствия принимаемых решений и делать соответствующие выводы с помощью геоинформационных систем;
- сформировать умения рефлексировать и анализировать развитие собственного опыта решения пространственных задач и выстраивать план самообразовательной деятельности.

В качестве результата освоения содержания дисциплин, использующих ГИС-технологии выделены компетенции:

- иметь базовые знания в области информатики и современных геоинформационных технологий, владеть навыками использования программных средств и работы в компьютерных сетях, умением создавать базы данных и использовать ресурсы Интернета, владеть ГИС-технологиями;
- уметь работать с информацией из различных источников для решения профессиональных и социальных задач;
- владеть основными методами, способами и средствами получения, хранения, переработки информации, иметь навыки работы с компьютером как средством управления информацией;
- освоение методов использования современных ГИС-технологий,
- знать о возможностях геоинформационных технологий и формах их применения в профессиональной деятельности, а также мировоззренческие, естественные и технические знания, отражающие систему современного информационного общества;
- уметь использовать геоинформационные технологии, применять способы и действия, определяющие операционную основу поисковой познавательной деятельности, опыт в сфере поисковой деятельности геоинформационного программного обеспечения (ПО) и технических ресурсов.

Компонент «структура и содержание» определяет особенности построения учебного курса.

Изучение дисциплин, использующих ГИС-технологии позволяет студентам закрепить и расширить полученные ранее базовые знания об информационных системах. ГИС - одна из разновидностей информационных систем, но современные геоинформационные системы сочетают в себе черты других автоматизированных информационных систем: управления, автоматизированного проектирования, документационного обеспечения, научных исследований, картографических и др. В рамках курсов дисциплин определяется место ГИС среди других информационных систем и рассматривается их взаимосвязь.

Учитывая описанные выше принципы обучения применительно к ГИС-технологиям определили две составляющие, которые ложатся на эти дисциплины — это общетеоретическая и прикладная составляющие:

- заложение теоретического фундамента знаний о ГИС-технологиях, пространственных данных, методах правления геоинформационной системой;

- создание базы предметных прикладных задач и ситуаций, для того, чтобы студенты смогли использовать современные методы принятия решений с помощью ГИС в будущей профессиональной деятельности.

При этом акцент в подготовке специалистов должен ставиться, прежде всего, на решении предметных задач с помощью информационных систем и ГИС-технологий.

Компонент «образовательные технологии»

Особенность учебных дисциплин, включающих освоение ГИС-технологий, заключается в междисциплинарных связях информационных и управленческих дисциплин. Для изучения возможностей ГИС-технологий в профессиональной деятельности будущего специалиста необходимы знания, полученные обучающимся в процессе изучения таки дисциплин как: «Информатика», «Офисные информационные технологии», «Информационные системы и технологии», «Теория вероятностей и математическая статистика», а также профессиональные знания, полученные при изучении ряда учебных дисциплин на профилирующей кафедре.

Применение ГИС, как информационной технологии, дает возможность эффективно использовать новые педагогические технологии в образовании и методике обучения, использующие современные деятельностные модели, такие как «обучение в сотрудничестве», «метод проектов» «кейс-метод». Поэтому обязательной составляющей является включение студентов в активную научно-исследовательскую и профессиональную деятельность, тем самым давая им возможность проявить свои креативные способности.

В качестве средств оценки знаний студентов используется электронное портфолио, в которое входят работы и проекты, выполненные в процессе изучения дисциплин, связанных с применением ГИС-технологий. А также в портфолио могут быть включены доклады конференций, презентации и т.п., отражающие участие обучающегося в научно-исследовательской деятельности с применением ГИС-технологий.

Использование электронного портфолио для подготовки современного специалиста в настоящее время очень актуально в связи с жизненной необходимостью использования информационных и геоинформационных технологий в профессиональной информационной и управленческой деятельности.

Основным информационным ресурсом является учебно-методический комплекс нового поколения по дисциплинам, построенный с учетом современных педагогических и цифровых информационных технологий. УМК разработан с учетом требований ФГОС и включает рабочую программу, отражающую цели, задачи, формируемые компетенции по каждому изучаемому разделу дисциплины. А также учебное пособие, содержащее курс лекций, методические рекомендации по выполнению практических занятий, фонды оценочных средств, включающие вопросы к зачетам, экзаменам, темы заданий и варианты проектов, список литературы и рекомендуемых информационных ресурсов.

Подведя итоги, можно сказать, что для формирования профессиональных компетенций как в рамках изучения дисциплин, использующих ГИС-технологии, так и для любой другой дисциплины, оказывается эффективным создание системы стимулов, соответствующих потребностям и интересам будущих специалистов, способных мотивировать их познавательную деятельность за счет организации соответствующих условий обучения.

3. Примеры работ, выполненных студентами университета «Дубна»

Дисциплины, включающие в учебный процесс освоение и применение ГИС-технологий, имеют дифференцированную структуру, в зависимости от уровня, года обучения и сферы профессиональной деятельности будущего специалиста.

Для каждого направления подготовки: геофизика, экология, муниципальное управление, менеджмент, информатика и вычислительная техника, бизнес-информатика, прикладная информатика, программная инженерия, фундаментальная информатика и информационные технологии и др. разработана своя коллекция предметных задач, позволяющая понять роль, место и возможности ГИСтехнологий в решении задач профессиональной деятельности.

Изучение теоретической составляющей такого рода дисциплин происходит поэтапно, с целью постепенного освоения основополагающих знаний по ГИС-технологиям.

В копилке университета есть опыт работы со школьниками. Занятия проводились в виде факультативных курсов. Программа изучения ГИС-технологий была составлена таким образом, что помогает сформировать у школьников новый взгляд на мир, обеспечивающий его комплексное восприятие и лучшее понимание взаимосвязей между его составляющими. Возможности ГИС-технологий позволяют использовать их для преподавания географии, экологии, краеведения и истории.

3.1. ГИС-справочник о детях с ограниченными возможностями

Школьниками разработана модель справочной системы о детях с ограниченными возможностями на основе ГИС ИНТЕГРО. Модель позволяет интегрировать базу данных о детях-инвалидах к электронной карте города. Это дает возможность оценить общую картину заболеваемости по всему городу. Также проект имеет гипертекстовый справочник заболеваний с описанием симптомов и способами лечения (см. рис. 1).

Рис. 1. Фрагменты ГИС-справочника о детях с ограниченными возможностями

3.2. Мониторинг школ города Дубна

На основе ГИС ИНТЕГРО была решена задача мониторинга местоположения школ города и выбора самой оптимальной относительно следующих критериев:

- близость к жилым домам;
- удобное расположение автобусных остановок;
- наличие зеленой зоны;
- состояние пришкольного участка;
- наличие опасных объектов (например, проезжей части, крупного предприятия и т.п.).

Применяя критерий, согласно которому в радиусе 500 шагов (400 метров) находится комфортная зона или опасная, в зависимости от решаемой задачи, школьники определили на электронной карте города самую удачно расположенную школу (см. рис. 2).

Рис. 2. Фрагменты проекта «Мониторинг школ г. Дубна»

3.3. Моделирование студенческого городка

Для реализации данного проекта студентам в качестве исходных данных предлагается карта территории университетского городка. На основе этих данных нужно спроектировать идеальный с точки зрения выбранного критерия городок и реализовать эту модель, используя средства геоинформационных технологий (см. рис. 3).

В ходе выполнения работ по этому проекту студенты учатся формулировать задачу, правильно описывать модель и критерии оценки результата. Узнают, что такое векторный ввод информации и знакомятся с новым классом ГИС-систем – векторизатором.

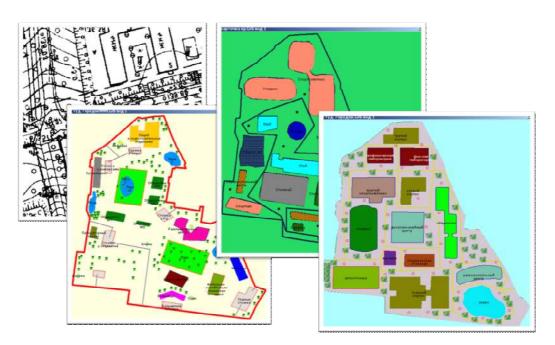


Рис. 3. Фрагменты проекта моделирования студенческого городка

3.4. Экологический мониторинг районов Московской области

Цель данной работы – создание экологического электронного атласа районов Московской области. Атлас включает тематические карты, отображающие информацию о выбранных из базы данных показателях состояния экологии (см. рис. 4).

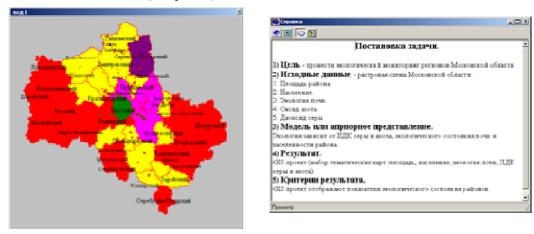


Рис. 4. Фрагменты проекта экологического мониторинга районов Московской области

3.5. Создание электронных тематических карт

В рамках реализации данных проектов студенты учатся создавать цифровую картографическую основу, строить 3-х мерные визуализации различных объектов на выбранной территории, интегрировать картографические и атрибутивные данные в единый комплекс. Студенты получают навыки унификации данных общего пользования и обеспечения доступа широких слоев общественности к социально значимой и открытой информации. В результате проекта формируются электронные тематические карты для решения различного рода прикладных задач (см. рис. 5).

Рис. 5. Фрагменты электронных тематических карт г. Дубна

3.6. Трехмерное моделирование

Потребность в реалистичном отображении окружающего мира увеличивает значимость трехмерного моделирования, которое облегчает планирование, контроль и принятие решений во многих отраслях:

- способно изменить технологию и практику управления территориального планирования;
- позволяет решать проблемы в области охраны окружающей среды;
- быстро реагировать на чрезвычайные ситуации;
- позволяет осуществлять разработку, ведение и комплексную оценку реализации инвестиционных и других проектов.

В рамках данного направления созданы ГИС-проекты для муниципальных управлений городов Дубны и Дзержинского Московской области. Основной задачей проектов такого рода является информационное обеспечение органов власти города для принятия управленческих решений по различным вопросам управления (земельный кадастр, рынок недвижимости, финансово-экономическое состояние и др.), используя цифровые карты и трехмерное моделирование (см. рис. 6).

Рис. 6. Фрагменты проектов трехмерного моделирования для г. Дубна и г. Дзержинский

3.7. Исследование возможностей ГИС-технологий для различных сфер деятельности

Все разработанные студентами проекты легли в основу коллекции предметных задач в обучении специалистов различных направлений подготовки. Использование такой коллекции предметных задач обуславливает развитие их познавательно-практического опыта.

Интеграция учебно-методических материалов в рамках коллекции задач приводит к сокращению времени на изучение нового теоретического материала и решение практических задач.

В рамках создания коллекции предметных задач реализован интересный экспериментальный проект создания ГИС-атласа анатомии человека (см. рис. 7).

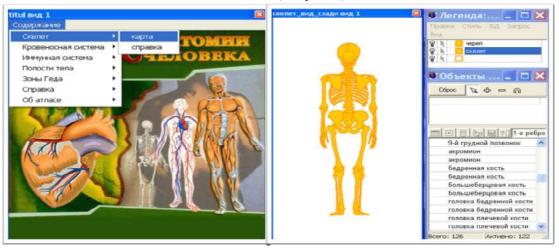


Рис. 7. Фрагменты проекта ГИС-атласа анатомии человека

Заключение

Таким образом, подводя итог сказанного относительно возможностей ГИС-технологий, как эффективного инструмента, применяемого в учебном процессе, и в решении предметных задач различных сфер человеческой деятельности можно сделать вывод, что являясь интеграционной технологией ГИС-технологии позволяют повысить уровень освоения студентами необходимых компетенций.

Список литературы

- 1. Зеер Э.Ф. Модернизация профессионального образования: компетентностный подход // Образование и наука. -2004. -№3. С. 42-52.
- 2. Зимняя И.А. Ключевые компетентности как результативно-целевая основа компетентностного подхода в образовании. М.: Исследовательский центр проблем качества подготовки специалистов, 2004. С. 12.
- 3. Кузнецов О.Л., Черемисина Е.Н., Никитин А.А. Геоинформационные системы. М.: ВНИИгеосистем, 2005.
- 4. Федорова В.Ю. Геоинформационные технологии как инструмент повышения качества профессионального образования в высшей школе // Вестн. Моск. гос. ун-та культуры и искусств. -2007. -№ 4. -ℂ. 151-154.