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Lenvio Oannol nedazoeuneckoll cmamvi AIAEMCA PA3biACHeHUe NOHAMUL 00beKMUBHOU 8ePOSIMHOCMU
8 K8aHmMoBoU mexanuke ¢ nozuyuu bailecoéckoeco nooxood, KOMoOpulll UHMEPNPemupyemcss ¢ pasiuyHblx
Joeudeckux npeonocwvliok. Obcyxcoaemcs 60npoc NOABLEHUS 0ObEKMUBHBIX 8ePOAMHOCEL, NPOSHO3UPYe-
MbIX K8AHMOBOU MEXAHUKOU, C JIO2UYeCKoU no3uyuu meopuu geposimuocmeti batieca, ¢ komopoi camu
8EPOSMHOCU MOZYM HOCUMb CYObEKIMUBHBLIL Xapaxkmep.

KaroueBble clioBa: KBAHTOBAS BCPOATHOCTD, MaTpHlla INIOTHOCTU, KBAHTOBBIC IIOCTYJIATHI, U3SMCPCHUS.

Introduction

Probability plays a central role throughout human affairs, and so everyone has an intuitive idea of what
it is. Moreover, because of the extreme generality and widespread use of the concept of probability, it cannot
be easily defined in terms of anything more basic. In mathematics and physics, it is often faced with a con-
cept that is both simple enough to be clearly understood, and fundamental enough to resist definition; for
example, a point and a straight line in Euclidean geometry. To make progress, we do not attempt to devise
ever clearer definitions, but instead formulate axioms that our understood but undefined objects are postulat-
ed to obey. Then, using codified rules of logical inference, we prove theorems that follow from the axioms.

Remark. It is instructive to treat probability as one of these primitive concepts. Dispensing, then, with
any attempt at definition, we say that the probability that a statement is true is a real humber between zero
and one. A statement may be true or false; if we know it to be true, we assign it a probability of one, and if
we know it to be false, we assign it a probability of zero. If we do not know whether it is true or false, we
assign it a probability between zero and one. There is typically no definitive way to make this assignment.
Different people could assign different numerical values to the probability that some particular statement is
true. In this sense, probability is subjective. This point is Bayesian.

Remark. Probability also enters quantum mechanics, in a seemingly more fundamental way. For exam-
ple, given a wave function 1//(x,t) for a particle in one dimension, the rules of quantum mechanics (which

. - 2 .
are apparently laws of nature) tell us that we must assign a probability ‘y/(x,t)‘ dx to statement “at time

t, the particle is between X and x+dx”. Different people do not appear to have a choice about this as-
signment. In this sense, quantum probability appears to be objective.

We introduce the notion of a probability, and explain how it can be applied to experimental data to turn
an originally subjective probability into an increasingly objective one, in the sense that all but strongly
biased observers agree with the final probability assignment.

The goal of this article is to understand the how the apparently objective probabilities of quantum me-
chanics can be fit into Bayesian framework, which allows different people to make different probability
assignments. In another words, we will discuss how the apparently objective probabilities predicted by
quantum mechanics can be treated in the framework of Bayesian probability theory, in which all probabili-
ties are subjective.

The axioms of probability: Kolmogorov’s probability axioms and classical
probabilities analogues of quantum physics

The statements to which we may assign probabilities must obey a logical calculus. Some key definition
(in which “iff” is short for “if and only if”):
1 S = astatement 5 | S, v S, = astatement that is true iff either

S, orS, is true

! Norsen T. On the explanation of Born-Rule statistics in the de Broglie-Bohm pilot-wave theory // Entropy, 2018. —
Vol. 20. — Ne 422. — Pp. 1-26.
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2 Q= a statement known to be true 6 | S, AS, = astatement that is true iff both §
and S, is true

3 | @= astatement known to be false 7 | S, and S, are mutually exclusive iff
S,AS, =0

4 S = astatement that is true iff S is false |8 | S,...., S, are a complete set iff
S;v...v§ =Qand S; AS; =g fori= ]

Elementary logical relationships among statements include:

SvS=Q,SAS=0,SA0Q=S,S A(S,vS;)=(S,AS,)V(S,AS;), etc,

Denoting the probability assigned to a statement S as P(S), we can state the first three axioms of
probability as following:

Axiom 1: P(S)is a nonnegative real number

Axiom 2: P(S) =1 iff S is known to be true
Axiom 3: If S, and S, are mutually exclusive, then P(S,vS,)=P(S,)+P(S,)

From these axioms, and the logical calculus of statements, we can derive some simple lemmas:
Lemma 1: P(S_) =1-P(S) Lemma 3: P(S)=0 iff S is known to be false

Lemma 2: P(S)<1 Lemma 4: P(S, AS,)=P(S,)+P(S,)—P(S,VvS,)

Remark. We omit the proofs, which are straightforward. We will also need the notion of a conditional
statement S, | S, as following: S, |S, is a statement iff S, is true; otherwise S,|S, is not a statement, and

cannot be assigned a probability. Given that S, is true, the statement Sz| S, istrue iff S, istrue.

The probability that S, | S, is true is then specified by

P(Sz A 81)
P(S)

Remark. If P(Sl) =0, then S, =< by Lemma 3, and so both sides of Axiom 4 are undefined: the

Axiom 4: P (S, ]S, )=

right side because we have divided by zero, and the left side because SZ| & is not a statement.

Another concept we will need is that of independence between statements. Two statements are said to
be independent if the knowledge that one of them if true tells us nothing about whether or not the other one

is true. Thus, if S,and S, are independent, we should have P(S,|S,)=P(S,) and P(S,|S,)=P(S,).
Using these relations and Axiom 4, we get a result that can be used as the definition of independence: S, and
S, are independent iff P(S, AS,)=P(S,)P(S,).

Remark. Note that the independence is a property of probability assignments, rather than the statements
themselves. Thus, we can disagree on whether or not two statements are independent.

Thus, in classical probability theory, Kolmogorov’s axioms states the following:

Probability is non-negative, p, >0;

Normalization of probability is z p,=10<p, <1;and
n
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probability for independent environments is additive.

We will consider classical analogues of some notions and procedures of quantum physics. For this case,
using classical probability models with dice or coins, we discuss several notions that are important for fur-
ther considerations and have close analogues in quantum mechanics and quantum information theory.

Classical probabilities

Using simple classical models, we try to present a clear interpretation of the notion of a quantum state
(pure and mixed) and of its preparation and measurement. We also consider the proof of the following two
statements that also seem to be valid in the quantum case.

1 | Ascribing a set of probabilities (which will be called “a state”, in analogy with the quantum
notation) to an individual system with random properties has clear operational sense in some ideal
case

2 | There is no principal, qualitative difference between a single trial an arbitrary large finite number
of uniform trials; in both cases, the experiment does not give reliable result

Preparation of a classical state. Throwing an ordinary die, one can get one of six possible outcomes, or
elementary events: the figure on the upper side may be n=1,2,3,4,5, or 6. (Here we mean a “fair”, i.e.,
sufficiently random throwing of dice with unpredictable results). Let the set of these six possibilities be

called the space of elementary events. This space consists of discrete numbered points n=1,...,N (N = 6).

To each one of these events, we ascribe, from some physical or other considerations, some probability p, .
Next, we assume Kolmogorov’s axioms of non-negativity, normalization, and additivity. The set of probabil-
ities will be called the state of this individual die and denoted as y ={p,}=(P., P,, Ps, P, Ps, Ps ) - If the
die is made of homogeneous material and has ideal symmetry, it is natural to assumed all probabilities to be

equal, p L
’ n_6'

Remark. However, in the general case this is not correct. One can prepare a die with shifted center of
mass or some more complicated model like a roulette wheel that has, for instance,

y =(0.01,0.01,0.01,0.01,0.01,0.95).

Clearly, each die or each roulette wheel can be characterized by a certain state v , i.e., by six numbers

that contain complete probability information about this die and about its asymmetry. The state (the set of
probabilities) of this die is determined by its form, construction, position of its center of mass, and by other
physical parameters. This state practically does not vary with time. Hence, according to our definition, the
state of the die does not contain information about the throwing procedure; the results of throwing are sup-
posed to be almost completely random and unpredictable. In the absence of any other information, we in-
voke Laplace’s principle (see below) of insufficient reason (also called the principle of indifference): when
we have no cause to prefer one statement over another, we assign them equal probabilities. While this as-
signment is logically sound, we clearly cannot have a great deal of confidence in it; typically, we are pre-
pared to abandon it as soon as we get some more information.

Q: What limitations, if any, should be placed on the nature of statements to which we are allowed to as-
sign probabilities?
There are various schools of thought. Let us consider any of them.

Frequentists assign probabilities only to random variables, a highly restricted class of statements that
we shall not attempt to elucidate;

Bayesians allow a wide range of statements, including statements about the future such as when this
coin is flipped it will come up heads,* statements about the past such as it rained here yesterday,* and time-
less statements such as “the value of Newton’s constant is between 6.6 and 6.7 x10™" m*/kg s®.”Some
level of precision is typically insisted on, so that, for example, “blue is good” might be rejected as too vague.
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Remark. The class of statements should include statements about the probabilities of other statements.
Some Bayesians (for example, de Finetti [1]) reject this concept as meaningless. However, it has found
some acceptance and utility in decision-making theory, where it is some times called a second order proba-
bility [2]. In particular, it is an experimental fact that people’s decision dependent not only on the probability
they assign to various alternatives, but also on the design of confidence that they have in their own probabil-
ity assignments [3]. This degree of confidence can be quantified and treated as “a probability of a probabil-

ity”.
To illustrate how we will use this concept, consider the following problem.

Example: Probabilities of probabilities. Suppose that we have a situation with exactly two possible out-
comes (for example, a coin flip). Call the two outcomes A and B . In the terminology of the logical calcu-
lus, AvB=Qand AAB=¢, sothat A and B are A complete set. The probability axioms then require

P(A)+P(B)=1, but do not tell us anything about either P(A) or P(B)alone. As abovementioned, in

the absence of any other information, we invoke Laplace’s principle of insufficient reason (also called the
principle of indifference): when we have no cause to prefer one statement over another, we assign them

equal probabilities. Thus we are instructed to choose P(A)=P(B)= % . While this assignment is logically

sound, we clearly cannot have a great deal of confidence in it; typically, we are prepared to abandon it as
soon as we get some more information. Another strategy is to retreat from the responsibility of assigning a

particular value to P(A), and instead assign a probability P(H) to the statement
H = "the value of P(A) is between h and h+dh". Here dh is infinitesimal, and 0<h<1. Then

P(H) takes the form p(h)dh, where p(h) is a nonnegative function that we must choose, normalized

1
by I p(h)dh =1. We might choose p(h)=1, for example. Now suppose we get some more information
0

about A and B. Suppose that the situation that produces either A or B as an outcome can be recreated
repeatedly (each repetition will be called a trial), and that the outcomes of the different trials are independ-

ent. Suppose that the result of the first N trialsis N, A's and N; B's, in a particular order.
Q: What can we say now?

P(D|H)P(H)
P(D)

The formula we need is Theorem (Bayes’ Theorem): P ( H |D) =

Bayes’ Theorem follows immediately from Axiom 4; since H A D is the same as D AH, we have
P(H|D)P(D)=P(H AD)=P(D|H)P(H). While H andD can be any allowed statements, the
letters are intended to denote “Hypothesis* and “Data.” Bayes’ theorem tells us that, given the hypothesis
H to which we have somehow assigned a prior probability P(H ) and we know the likelihood P(D|H )

of getting a particular set of data D given that the hypothesis H is true, then we can compute the posterior
probability P(H |D) that the hypothesis H is true, given the data D that we have obtained.

Remark. Furthermore, if we have a complete set of hypothesis H;, then we can express P(D) in terms
of the associated likelihood and prior probabilities: starting with

D=DAQ=DA(H,vH,v...)=(DAH,)v(DAH,)...

are noting that D A H; and D A H ;are mutually exclusive when i # j, we have

P(D)=XP(DAH,) = ZP(DIH)P(H,)
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where the first equality follows from Axiom 3, and the second from Axiom 4.

To apply these results to the <case at hand, recall that the hypothesis is
H="P(A) isbetweenh andh-+dh". We have assigned this hypothesis a prior probability

P(H)=p(h)dh. The data is a string of N, A's and Ny B's, in particular order; each of the

N =N, + N outcomes is assumed to be independent of all others.

Using  the  definition  of  independence, we see that the likelihood is
P(D| H ) = F’(A)NA P(B)NB =h"» (1— h)NB . Applying Bayes’ Theorem, we get the posterior probability:

1

P(D|H)=P(D)"h" (1-h)" p(h)dh, where P(D)=[h"*(1-h)" p(h)dh. If the number of
0

trials N is large, and if the prior probability p (h) has been chosen to be a slowly varying function, then the

. - N . . .
posterior probability P(H | D) has a sharp peak at heXID = WA , the fraction of trials that resulted in outcome

1
A . The width of this peak is proportional to N ?if both N,and N are large, and to N “Lif either N, or

N is small (or zero). Thus, after a large number of trials, we can be confident that the probability
P(A)that the next outcome will be A'is close to the fraction of trials that have already resulted in A. The
only researcher who will not be convinced of this are those whose choice of prior probability p(h) is

strongly biased against the value h = h, . Therefore, the value h,,, for the probability his becoming objec-

tive, in the sense that almost all observers agree on it. Furthermore, those who do not agree can be identified
a priori by noting that their prior probabilities are strong functions of h.

Those who reject the notion of a probability of a probability, but who accept the practical utility of this
analysis (which was originally out by Laplace), have two options. Option one is to declare that his not
actually a probability; it is rather a limiting frequency or a propensity or a chance. Option two is to declare

that p(h)dh is not actually a probability; it is a measure or a generating function. Let us explore option two
in more detail.

Example. Rather than assigning a second-order probability to the hypotheses:
H :"P(A) is between h and h+dh", we assign a probability to every finite sequence of outcomes;
that is, we choose values P(A), P(B), P(AB), P(BA), P(AAA), P(AAB), and so on, for strings of

arbitrary many outcomes. We assume that all possible strings of N outcomes form a complete set. Our
probability assignments must of course satisfy the probability axioms, so that, for example,

P(A)+P(B)=1. We also insist that the assignments be symmetric; that is, independent of the ordering of

the outcomes, so that, for example, P(AAB)=P(ABA)=P(BAA). Furthermore, the assignments for

strings of N outcomes must be consistent with those for N +1outcomes; this means that, for any particular
string of N outcomes S, P(S)=P(SA)+P(SB). A set of probability assignments that satisfies these
requirements is said to be exchangeable.

Then, the de Finetti representation theorem states that, given an exchangeable set of probability as-
signments for all possible string of outcomes, the probability of getting a specific strings D of N outcomes

1
can be always be written in the form P (D) = '[ h" (1- h)NB p(h)dh, where p(h)isa unique nonnegative
0

1
function that obeys the normalization condition I p (h)dh =1, and is the same for every string D .
0
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Note that the last equation is exactly the same as above mentioned. Thus an exchangeable probability
assignment to sequences of outcomes can be characterized by a function p(h)that can be consistently
treated as a probability of a probability. But those who find this notation unpalatable are free to think of
p (h) as specifying a measure, or a generating function, or a similar euphemism.

Therefore, if we need to assign a prior probability but have little information, it can be more construc-
tive to abjure, and instead assign a probability to a range of possible values of the needed prior probability.
This probability of a probability can then be updated with Bayes’ theorem as more information comes in.

Probability in quantum mechanics

Suppose we are given a qubit: a quantum system with a two-dimension Hilbert space. We are asked to
make a guess for its state. Without further information, the best we can do is invokes the principle of indif-
ference. In the case of a finite set of possible outcomes, this principle is based on the permutation symmetry
of the outcomes; we choose the unique probability assignment that is invariant under this symmetry.

The quantum analog of the permutation of outcomes is the symmetry of rotations in Hilbert space. The
only quantum state that is invariant under this symmetry is the fully mixed density matrix: p = EI . Thus

we are instructed to choose p as the quantum state of the system. While this assignment is logically sound,

we clearly cannot have a great deal of confidence in it; typically, we are prepared to abandon it as soon as
we get some more information.

Another strategy is to retreat from the responsibility of assigning a particular state (pure or mixed) to
the system, and instead assign a probability P(H )to statement H ="’the quantum state of the system is a

density matrix within a volume d p centered on p >, where p is a particular 2x2 Hermitian matrix with
nonnegative eigenvalues that sum to one, and d p is a suitable differential volume element in the space of
such matrices.

We can parameterize p with three real numbers x,y, and z via

(1+z x—iyj
p=|_ . ,
X+iy 1-z
where x> +y?+2z22=r’<1.

We then take d p=dV , where dV :%dxdydz is the normalized volume element: IdV =1. We

might choose p(p)=1, for example.

Now suppose that we get some more information about the quantum state of the system. Suppose that
the procedure, that prepare the quantum state of the particle, can be recreated repeatedly (each repetition of
this will be called a trial), and that the outcome of measurements performed on each prepared system are
independent. Suppose further that we have access to a Stern-Gerlach apparatus? (see Fig. 1) that allows us to
measure whether the spin is (+) or (-) along an axis to our choice.

2 Wennerstrom H., Westlund Per-Olof. A quantum description of the Stern-Gerlach experiment // Entropy, 2018. -
Vol.19. - No186. - Pp 1-13.
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Fig. 1. A schematic picture of the Stern-Gerlach experimental set up

We choose the z axis. Suppose that the result of the first N trialsis N (+)'sand N_ (-)'s.

Q: What can we say now?

Example. Given a density matrix p, parameterized as above, the rules of quantum mechanics tell us
that the probability that a measurement of the spin along the z axis will yield (+1) is

1 1
P(o, =+1|p) =TrE(1+ o,)p= E(1+ z)

where o, is a Pauli matrix, and the probability that this measurement will yield (-1) is

P(o, :—1|p):Tr%(1—O'Z)p=%(l— z).

Now we use Bayes’ theorem. The hypothesis is H ="the quantum state is within a volume d p cen-
tered on p”. We have assigned this hypothesis a prior probability P(H ) = p(p)dp. The data D is a

string of N, (+)'sand N_ (-)'s, in a particular order; each of the N =N, + N_ outcomes is assumed to
be independent of all the others. Using the definition of independence, we see that the likelihood is

) M N N
P(DIH)=[P(o,=+1|p)] [P(o,=-1]p)] = {E(u z)} [5(1— z)} .
Applied Bayes’ theorem, we get the posterior probability

1

p(HIo)=P(e) [ 2a+2)| [Sa-2)] s(o)ar,

N, N
where P(D):J‘{%(l+ z)} {%(1—2)} p(p)dp. When the number of trials N is large, and the

prior probability p (p) is a slowly varying function, the posterior probability P ( H |D) has a sharp peak at
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N,-N_
L=17. =

exp

. Thus, after a large number of trials in which e measure o, , we can be confident of the

value of the parameter z in the density matrix of the system.

Remark. The only people who will not be convinced of this are those whose choice of prior probability
p( p) is strongly biased against the value z = z,,,. Furthermore, those who do not agree can be identified a

priori by noting that their prior probabilities are strong functions of p . In choosing p(p)dp, we can use

the principle of indifference, applied to the unitary symmetry of Hilbert space, to reduce the problem to one
of choosing a probability for the eigenvalues of p. There is, however, no compelling rationale for any

particular choice; in particular, we must decide how biased we towards pure states.

Remark. We have argued that, in a Bayesian framework, the nature of our ignorance about a quantum
system can often be more faithfully represented by a prior probability p( p)d p© over the range of allowed

density matrices, rather than by a specific choice of density matrix. This method is particularly appropriate
when (i) the preparation procedure may favor a direction in Hilbert space, but we do not know what that
direction is, and (ii) we can recreate the preparation procedure repeatedly, and perform measurements of our

choice on each prepared system. In this case, as data comes in, we use Bayes’ theorem to update p ( p)d pP.

Eventually, all but strongly biased observers (who can be identified a priori by an examination of their
choice of prior probability) will be convinced of the values of the quantum probabilities. In this way, initial-
ly subjective probability assignments become more and more objective. Caves et al in [1] regarded

p(p)dp as a measure rather than a probability. This approach required them to prove, first, a quantum
version of the Finetti theorem [2], and, second, that Bayes’ theorem can be applied to p ( p) d p, Both steps

become unnecessary if we treat p ( p)d p as, fundamentally, a probability.

Example. We can orient the Stern-Gerlach apparatus along different axes (see, Fig. 1). If we choose the
xaxis or the y axis, the relevant predictions of quantum mechanics are

1 1 1 1
P(o, =+1|p)=Tr§(1+JX)p =E(1+ x) | P(o, =—1|p)=TI’E(1—GX)p =E(1—x)

P(o, =+1|p)=Tr%(1+Uy)p=%(l+ y) | P(o, =—1|p)=Tr%(1—Uy)p=%(l— y)

For each trial, we can choose whether to measure o,,0,,0r o,. Then, if the outcomes include N,

measurements of o, with the result o, =+1, and so on, the posterior probability becomes

_ PN R I b
P(HIP)=P(0)" IT |50+ )| | 30-D)] p(e)dr.
j=x.y.z
where P(D) is given by obvious integral. Clearly when the number of trials is large, we have determined

the entire density matrix to the satisfaction of all but strongly biased observers. Our subjective of probabili-
ties have led us to an objective conclusion about quantum probabilities.

Q: If we assign an impure density matrix o to a quantum system, does this not already take into ac-
count our ignorance about it?

Q: Why is it preferable to assign, instead, a probability p(p)dp to the set of possible density matri-
ces?

The answers on these questions depend on the nature of our ignorance. Let us consider an example.
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Example: Probabilities for density matrices vs. density matrices. Suppose the system is the spin of an
. 1 . S .
electron plucked from the air. Then we expected that the state p = > I will describe it, in the sense that if

we do repeated trials (plucking a new electron each time, and measuring its spin along an axis of our
choice), we will find that

N+X_N—X N+y_ny N+Z_N—Z
=5 yexp =———, and Zexp =5 o
N,, +N_ N+z+N—z

and all tend to zero.

Suppose instead that the spin is prepared by a technician who (with the aid of a Stern-Gerlach device)
puts it in either a pure state with o, =+1, or a pure state with o, =+1, and each time decides which
choice to make by flipping a coin that we believe is fair. In this case the appropriate density matrix is

peusen) fa0ses 43 )

1+z x-iy

e Yexpr @Nd 2, t0 approach

Comparing with p :( j we see that we now expect X

X+iy 1-z
1 1 . . - o
+§, 0, and + > respectively. Now suppose that the spin is prepared by a technician who puts it in either

a pure state with o, =+1, or a pure state with o, =+1, and makes the same choice every time. We, how-

ever, are not aware of what her choice is. If forced to assign a particular density matrix, we would have to
choose as above mentioned.

However, the situation is clearly different from what it was in the previous example. In the present case,
repeated experiments would not verify as above mentioned density matrix p, but would instead converge

on either X, =0and z,,, =+1, or x,,, =+1and z,, =0. Therefore, in this case, it is more appropriate to

assign a prior probability of one-half to p=[%(1+az)} and a prior probability of one-half to

1
p= |:E(l+ o, )} Then, as data comes in, we can update these probability assignments with Bayes’ theo-

rem, as described above.

Thus, it is better to choose p( p)d £ When it is possible that there is something about the preparation

procedure that consistently prefers a particular direction in Hilbert space, but we do not know what direction
is. Since this possibility can rarely out a priori, we are typically better served by choosing a priory probabil-

ity p(,)dp, rather than a particular value of p itself,

Suppose we have decided to choose a prior probability p(p)dp for the density matrix p of some
quantum system.

Q: How should we choose this probability?

Example: Non-informative priors for density matrices. In the case where we have little or no infor-
mation about the quantum system, we would like to formulate the appropriate analog of the principle of
difference. Consider a qunit, a quantum system whose Hilbert space has dimension n that is known to us.

We can always write the density matrix (whatever it is) in the form p=U"'pU , where U is unitary with
determinant one, and p is diagonal with nonnegative entries p,,..., p, that sum to one. There is a natural

measure for special unitary matrices, the Haar’s measure; it is invariant under U — CU , where C is a
constant special unitary matrix.

10
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In the simplest case of n=2, we can parameterize U as following:
U =exp{iao; jexplia,o, expliao,}

with 0<¢, <7,0<q, <

N |-

7,0<a,<m; then the normalized Haar’'s measure is

dU =77sin(a, )deyde,da;. This construction is extended to all n. Suppose we know that the state of
the quantum system is pure. Then we can set p; =&, 0;,, and parameterize p via U . Then it is natural to
choose dp =dU and p(p) =1, because this is the only choice that invariant under unitary rotations in
Hilbert space.

Now consider the more general case where we do not have information about the purity of the system’s
quantum state.

Example. We define the volume element via d p = dUdF , where dU is the normalized Haar’s meas-
ure for U , and dF =(n—-1)&(p, +...+ p, —1)dp,...p, is normalized measure for the p;’s that we will

call the Feynman measure (because the same integral appears in the evaluation of one-loop Feynman dia-
grams). In last equation assumes that each p, runs from zero to one; then p=U"pU is an overcomplete

construction, because U can rearrange the p,’s. This is easily fixed by imposing p, =...> p,, and multi-

plying dF by n!. However, equation for dF as it stands is easier to write and think about; the overcom-
pleteness of this construction of p causes no harm. In the case n=2, we previously chose

dp=dVv :%dxdydz for the parameterization. In this case, the eigenvalues of p are %(1+ r) and
%(1— r) ,with 0<r <1. After integrating over U , dV — 3r?dr ; in comparison, dF =dr for this case.

. . . . . 1
The purity of a density matrix p can be parameterized by Trp?, which for n=2 is E(1+ rz) . Thus the

volume measure dV is more biased towards pure states than is the Feynman measure dF ; we have
dv = 3(2Tr,o2 —1)dF . In general, we can accommodate any such bias taking p()d pto be of the form:

p(p)dp= p(Trpz)dUdF , where p(x) is an increasing function if we are biased towards having a pure

state. Unfortunately, there does not seem to be a compelling argument towards any particular choice of the
function p(x), including p(x)=1. Once we have done enough experiments, our original biases become
largely irrelevant, as we saw above.

The state is often characterized by the set of moments { ,uk}, i.e., numbers generated by the state ac-

cording to the following rule: z(n"> =Z:nkpn . Combining the first and the second moments, we
n

obtain the variance An? = <n2> —<n>2. Its root, An, called the standard deviation or the uncertainty, char-
acterizes deviations from the mean value, i.e., fluctuations.

Example. For instance, for a regular die, (n) =35 and An=1.7, while for state (3.1.1), (n)=5.85

and An = 0.73. Having the full set of moments, one can, in principle, reconstruct the state, i.e., the proba-
bilities. (This is not always true in quantum models that see below).

Any possible state of the die can be depicted as a point in the 6D space of states. The frame of reference
for this space should be given by the axes p,or ¢, =/p, . In the last case, the depicting point belongs, due

to the normalization condition, to the multi-dimensional sphere S°, and the state vector can be written as
W= {cn } (for comparison with the Poincaré sphere S*, see below).

11
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Now let N =2. One can imagine a coin made of magnetized iron. Due the magnetic field on the Earth,
the probabilities of the heads, p,, or tails, p_ =1— p,, depend on the value and direction of magnetization.

Each individual coin can be characterized by a state y = ( p.,p ) .

Measurement of a classical state

For a state v, which is prepared by means of a certain procedure and therefore known, one can predict

the outcomes of individual trials. However, these predictions only relate to probabilities, with the exception
fro the case where one of the components of  equals 1. One can pose the inverse problem of measuring the

state .

Clearly, it is impossible to measure  for a given coin in a single trial. (Speaking of a trial, we mean a
“fair” throw of the coin with the initial toss being sufficiently chaotic). For instance, “tails” can correspond
to any initial state except y, :(p+ =0,p_ :1), where the index of y denotes the number of trials M .
One should either throw one and the same coin many times or make a large number of identically prepared

coins, a uniform ensemble. If the coins remain the same, are not damaged in the course of trials, then all
these ways to measure the state are equivalent (the probability model is ergodic).

Example. From the viewpoint of measurement, the only way to define the probability is to connect it
with the rate of corresponding outcome. Throwing a coin 10 times and discovering “heads” each time, one
can state, with a certain extent to confidence, that =y, = (1,0). However, it is possible that the next 90

trials the coin will show “tails“. This time, we will be more or less confident that v =y, = (0.1,0.9), -

and still we can be mistaken, since the actual state might be, say, v = (0.5,0.5) :

This example of exclusive bad luck shows that an actual (prepared) state y cannot be measured with
full reliability. One can only hope that as M increase, the probability of a large mistake falls and y,, ap-

proaches the actual value . In other words, relative rates of different outcomes almost always manifest
regularity for increasing M .

Hence, for the case of known preparation procedure, the state y (the set of probabilities) can be associ-

ated with the chosen individual object. Here the state is understood as the information about the object
allowing the prediction of the probabilities of different events. At the same time, for the case of known
measurement results, the state can be only associated with an ensemble of similarly prepared objects, always
with some finite reliability. There is no principal difference between a single trial and number of trials: the
results of experiments are always probabilistic. Similar conclusions can be made in the quantum case.

Example: Analogue of a mixed state and the marginals. Consider two sets of coins prepared in the states

!

z//’:(p;,p_) and z//”:(pf,pf). The numbers of coins in the sets are denotes by N’ and N”

(N '+N"=N ) . If the coins are randomly chosen from both sets and then thrown, the “heads* and “tails*
will evidently occur with weighted probabilities

_ PIN"+piN”" _ p'N"+p’N"
o TN P- TN
which are determined by both the properties of the coins and the relative numbers of coins in the sets,
N’ N" . - . . . .
N and N In this case, double stochasticity appears: (i) due o the random choice of the coins; and (ii) due

to the random occurring of “heads* and “tails®.

This is the simplest classical analogue of a mixed state in quantum theory (in its first definition, see be-
low). Clearly, such a mixed state cannot be associated with an individual system; it is a property of the
ensemble containing two sorts of coins. In quantum theory, this corresponds to a classical ensemble of
similar systems being in various states with some probabilities.

12
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Remark. In quantum theory, there also exists another definition of a mixed state. This definition charac-
terizes a part of the degrees of freedom for a quantum object; in the classical theory, it corresponds to mar-
ginal probability distributions, or marginals. Marginal distributions are obtained by summing elementary
probabilities, in accordance with Kolmogorov’s additivity theorem. Hence, they can be considered as a
property of an individual object. For instance, for a die, one can determine the marginal probabilities of odd

and even numbers, p,,and p_. For the state (3.1.1), we obtain p, =0.97,and p_=0.03.

Example: Moments and probabilities. Now let two coins from different sets be thrown simultaneously.
We introduce two random variables S;,S, taking values s, S, = £1 for “heads” or tails®, respectively. The

system is described by a set of probabilities p(sl, S, = il) of four different combinations (il, il). If the
coins do not interact and are thrown independently, then the “2D” probabilities p(sl, Sz) are determined by

the products of the corresponding 1D probabilities p(s,,s,)= p(s,) P(S,). However, let the peculiarities

of the throw or the interaction between the magnetic moments of the coins lead to some correlation between
the results of the trials. Then the state of the two coins is determined by the set of four elementary probabili-

ties p(sl, 32). The marginal probabilities and the moments are obtained by summing,

P (S0 )=P(s.+1)+ p(s,,-1),
(S)=p(+1)-p(-1)=2p(+1)-1(k =12)
(S,S,)=p(+L+1)+ p(-1-1)— p(+1L,-1)- p(-1,+1)

Hence, (S, )| <1,[(S,S,)| < 1. In the simple case considered here, one can easily solve the inverse prob-

lem, which is called the problem of moments. In other words, one can easily express the probabilities in
terms of moments,

1 1
Py (S¢) :§(1+ 5.(S)): P(s,5,) =$(1+ 5,(S,)+5,(S,) +55,(S,S,)).
From above condition and the condition p(sl,sz) >0, it follows that the moments are not independ-
ent; they must satisfy certain inequalities. Provided that the first moments <Sk> are given, the correlator
(S,S,) cannot be arbitrary large or small, f_, <(SS,)<f_.

Here
frin = Max (—1—-(S,) = (S,), —1+(S,)+(S,)),  fra =Min(1+(S,)—(S,),1-(S,)+(S,)).
For instance, for (S,)=(S,) , we have the limitation 2|(Sl>|—1£ |<8182>| <1. In particular, the corre-

lator cannot equal zero for [(S, )| > % (ie. for p, >0.75).

In the quantum theory, analogous inequalities for quantum moments <F> which are obtained by aver-

aging with respect to the wave function (WF), <F> = <r,y‘ F | gy) , are sometimes violated. Paradoxes of these

kind cases will be discussed below. Note that in such cases, the notion of elementary probabilities has no
sense, and the quantum probability model can be called non-Kolmogorovian.

Quantum probabilities

The classical models described above have little connection with quantum physics. The “state” of a die
can include not only the properties of this die, as we supposed above, but also the parameters of the initial
toss. (According to classical dynamics, these parameters unambiguously determine the outcome).

13
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Remark. Stochasticity appears here as a result of variations in the value and direction of the initial force.
(Under certain additional conditions, such models manifest dynamical chaos). Quantum stochasticity is
believed to have a fundamental nature; it is not caused by some unknown hidden variables, though Einstein
could never admit that: “God plays dice®. It is an astonishing feature of quantum probability models that in
some cases, there exist marginals but there are no elementary probabilities. This feature can be called the
non-Kolmogorovianess of the quantum theory; in the general case it corresponds to the absence of a priori
values of the observables (see in details below). For instance, one can measure (or calculate using wave
function (WF) ) coordinate and momentum distribution for a particle at some time moment, but their joint

distribution cannot be measured. Reconstruction of the joint distribution from the marginals is ambiguous
and sometimes leads to negative probabilities. Therefore, it is natural to assume that a particle has no a
priori coordinates and momenta.

Remark. It is also important that classical models have no concept of complex probability amplitudes
and hence, do not describe quantum interference and complex vector spaces of states. There is no classical
analogue of non-commuting variables, which do not admit joint probability distributions.

Four basic topics can be considered in this case: (i) the logical structure of quantum description; (ii) the
necessity of distinguishing between a theory and its interpretation; (iii) the WF: its sense, preparation, modu-
lation, measurement, and reduction; and (iv) “non-locality” of quantum physics, i.e., the impossibility of
introducing joint probabilities for non-commuting operators. In this connection, non-classical experiments
must be discussed.

Remark. The physical meaning of the basic quantum mechanical concepts (such as the WF, reduction,
state preparation and measurement, the projection postulate, and the uncertainty principle) can be clarified
using realistic experimental procedures and employing classical analogies whenever possible. In all known
experiments, excellent agreement is observed between the prediction of the quantum theory and the corre-
sponding experimental data. Unfortunately, the efficiency of the quantum formalism is accompanied by
difficulties in its interpretation, which have not yet been overcome. In particular, there is still no common
viewpoint on the sense of WF. Another important notion of quantum mechanics, the WF reduction, is also
uncertain. Two basic types of understanding can be distinguished among a variety of viewpoints. A group of
physicists following Bohr consider the WF to be a property of each isolated quantum system such as, for
instance, as ingle electron (the orthodox, or Copengagen, interpretation). The other group, following Ein-
stein, assumes that the WF describes an ensemble of similar systems (the statistical, or ensemble, interpreta-
tion). Nine different interpretations of the quantum formalism are considered in [1]. Among many other
studies devoted to methodological problems of quantum physics, it is also worth mentioning in [1 —7].

The sense of some basic notions in non-relativistic quantum physics can be clarified using the opera-
tional approach, i.e., demonstrating how these notions manifest themselves in experiments.

Here we mostly focus on dynamical experiments connected with evolution of quantum systems in space
and time. As a typical example, we consider the Stern-Gerlach experiment where particles with magnetic
moment M are deflected in an inhomogeneous magnetic field.

Example. In 1922, Stern and Gerlach performed an experiment, passing electrons through a strong, in-
homogeneous magnetic field. Figure 1shows the structure of the Stern-Gerlach physical experiment. In this
case, S is the source of particles, F is a screen with a pinhole (collimator), F, is a domain with an inhomo-
geneous magnetic field, D is a photographic plate. The elements F, and F, perform spatial and magnetic
filtering and can be considered as parts of the preparation and measurement sections of the setup, respective-
ly. If D contains a pinhole, then F, and D work as a filter, which sometimes transmits particles in the state

with definite spin projection. Using this example, one can clearly specify the basic elements of a dynamical
experiment: the source of particle S, the detectors D (crystal of silver bromide contained in the photosensi-
tive film), the space between S and D where quantum evolution of the particle takes place, and the filters

F.,F,. The source S and the collimator F, (a screen with a pinhole for spatial selection) form the prepara-

tion part of the setup. The magnet F, provides the inhomogeneous magnetic field that couples the spin and

kinetic degrees of a particle. Together with the detectors D, the magnet can be considered as the measure-
ment part of the setup. In such a scheme, only the evolution of a particle between the source and the detector

14
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is described by the Schrodinger equation accounting for the classical magnetic field. S, F, F, and D are
supposed to be classical devices with known parameters.

Thus in the classical probabilistic model, events (e.g., word occurrences, category memberships, rele-
vance, location, task, genre) are represented as sets and the probability measure is based on a set measure,
e.g., set cardinality. In contrast, in quantum probability, events are represented as orthonormal vectors and
the probability measure is the trace of the product between a density matrix and the matrix representing an
event as summarized in Table 1.

Table 1. The correspondence between classical probability and quantum probability

Notion Classical Quantum

Event space 02 Hilbert vector space H
Random event Set Orthonormal basis {|B), |B}}
Probability Measure|Set measure State vector |@)

The simple example in Fig. 2 depicts that when vectors are used to implement both events and densities
the probability in the vector space is the squared inner product between the vectors, that is, the squared size

of the projection of | A) onto | ).

Fig. 2. The correspondence between classical probability and quantum probability

An important recurring theme is the unusual, non-classical properties of quantum mechanics.
But what exactly is the difference between quantum mechanics and the classical world?

Understanding this difference is vital in learning how to perform information processing tasks that are
difficult or impossible with classical physics [3 — 6].

Appendix conclude a brief discussion of the Bell inequality, a compelling example of an essential dif-
ference between quantum and classical physics.

Appendix 1: EPR paradox, Bell inequality and Kochen-Specker theorem

Al.1.Einstein —Podolsky — Rosen (EPR) - Paradox and Non-locality in Quantum
Mechanics

When we speak of an object, we assume that the physical properties of that object have an existence in-
dependent of observation. That is, measurements merely act to reveal such physical properties. As quantum
mechanics was being developed in the 1920’s and 1930’s a strange point of view arose that differs markedly
from the classical view.

(1) According to guantum mechanics, an observed particle does not possess physical properties that exist
independent of observation.
(2) Rather, such physical properties arise as a consequence of measurements performed upon the system.
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Remark Al1.1. For example, according to quantum mechanics a qubit does not possess definite proper-
ties of “spin in the z direction, o, ”, and “spin in the X direction, o, ”, each of which can be revealed by
performing the appropriate measurement. Rather, quantum mechanics gives a set of rules, which specify,
given the state vector, the probabilities for the possible measurement outcomes when the observable o, , is

measured, or when the observable o, is measured.

Albert Einstein [with Nathan Rosen and Boris Podolsky (EPR)] proposed a thought experiment which,
he believed, demonstrate that quantum mechanics is not a complete theory of Nature.

The essence of the EPR argument is as follows. EPR were interested in what they termed “elements of
reality”. Their belief was that any such element of reality must be expressed in any complete physical theo-
ry. The goal of the argument was to show that quantum mechanics is not complete physical theory, by
identifying elements of reality that were not included in quantum mechanics. The way they attempt to do
this was by introducing what they claimed was a sufficient condition for a physical property to be an element
of reality, that it be possible to predict with certainty the value that property will have, immediately before
measurement.

Example Al.1. Consider, for example, an entangled pair of qubits belonging to Observable 1 and Ob-

servable 2, respectively: |y/) = %(|Ol} —|10>). Suppose Observables 1 and 2 are a long way away from

one another. Observable 1 performs a measurement of spin along the 9 axis, that is, he measures the ob-
servable 9-&. Then a simple quantum mechanical calculation (see, below) shows that he can predict with

certainty that Observable 2 will measure (— 1) on his qubit if he also measures the 9 axis. Similarly, if
Observable 1 measured (- 1), then he can predict with certainty that Observable 2 will measure (+1) on his
qubit. Because it is always possible for Observable 1 to predict the value of the measurement result recorded

when Observable 2’s qubit is measured in the 9 direction, that physical property must correspond to an
element of reality, by the EPR criterion, and should be represented in any complete physical theory.

However, standard quantum mechanics, as we have presented it, merely tells one how to calculate the
probabilities of the respective measurement outcomes if - is measured. Standard quantum mechanics
certainly does not include any fundamental element intended to represent the value of 3-&, for all unit
vectors 9.

Remark Al.2. The goal of EPR was to show that quantum mechanics is incomplete, by demonstrating
that quantum mechanics lacked some essential “element of reality”, by their criterion. They hoped to force a
return to a more classical view of the world, one in which systems could be ascribed properties which exist-
ed independently of measurements performed on those systems. Unfortunately (for EPR), most physicists
did not accept the above reasoning as convincing. The attempt to impose on Nature by fiat properties, which
she must obey seems a most peculiar way of studying her laws. Nearly thirty years after the EPR paper was
published, an experimental test was proposed that could be used to check whether or not the picture of the
world which EPR were hoping to force a return to is valid or not. It turns out that Nature experimentally
invalidates that point of view, while agreeing with quantum mechanics. The key to this experiment invalida-
tion is a result known as Bell’s inequality.

Bell’s inequality is not a result about quantum mechanics, so as recommended in [2] “the first thing we
need to do is momentarily forget all our knowledge of quantum mechanics”.

Remark Al.3. To obtain Bell’s inequality, we’re going to do a thought experiment, which we will ana-
lyze using our common sense notions of how the world works — the sort of notions EPR thought Nature
ought to obey. After we have done the common sense analysis, we will perform a quantum mechanical
analysis, which we can show is not consistent with the common sense analysis. Nature can then be asked, by
means of a real experiment, to decide between our common sense notion of how the world works, and
guantum mechanics.

Example Al.2: Experiment description. We perform the following experiment, illustrated in Fig. Al.1.
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Fig. Al.1. Schematic experimental setup for the Bell’s inequalities

Observable 1 receives one particle and performs a measurement on it. Imagine that Observable 1 has
available two different measurement apparatuses, so he could choose to do one of two different measure-
ments. Observable 1 can choose to measure either Q or R, and Observable 2 chooses to measure either Q

or R. They perform their measurements simultaneously. Observables 1 and 2 assumed to be far enough
apart that performing a measurement on one system can not have any effect on the result of measurements

on the other. These measurements are of physical properties which we shall label P, and Py, respectively.

Observable 1 doesn’t know in advance which measurement he will choose to perform. Rather, when he
receives the particle he flips a coin or uses some other random method to decide which measurement to
perform. We suppose for simplicity that the measurements can each have one of two outcomes, (+1) or (-

1). Suppose Observer’s I particle has a value Q for the property P,. Q assumed to be an objective proper-
ty of Observer’s 1 particle, which is merely revealed by the measurement. Similarly, let R denote the
value revealed by a measurement of the property P, .

Similarly, suppose that Observer 2 is capable of measuring one of two properties, Py or P;, once

again revealing an objectively existing value S or T for the property, each taking value, (+1) or (- 1).
Observer 2 does not decide beforehand which property he will measure, but waits until he has received the
particle and then chooses randomly. The timing of the experiment is arranged so that Observers 1 and 2 do
their measurements at the same time (or, to use the more precise language of relativity, in a causally discon-
nected manner). Therefore, the measurement which Observer 1 performs cannot disturb the result of Ob-
server’s 2 measurement (or vice versa), since physical influences cannot propagate faster than light. We are
going to do some simple algebra with the quantity QS + RS + RT —QT .

Example A1.3: Bell inequalities. Notice that
QS +RS +RT —QT =(Q+R)S+(R-QJT. (AL.1)

Because R,Q = +1 it follows that either (Q+ R)S =0 or (R —Q)T =0. In either case, it is easy to
see that QR + RS + RT — QT =+2. Suppose next that p(q, r, s,t) is the probability that, before the meas-
urements are performed, the system is in a state where Q =q,R=r,S =5, and T =t. These probabilities

may depend on how Observer 3 performs his preparation, and on experimental noise. Letting M () denote
the mean value of a quantity, we have

>op(g.r,s,tNas+rs+rt—qt)
©q,r,s;t
2. p(g.r,s,t)x2 (A1.2)

q.r.s.t

= 2

M(QS+RS+RT—QT)§

IN
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Also,
M(QS +RS +RT —QT)

Y plarstlas+ Y pla.r.st)rs

:oq,r,st q,r,s,t

+ > plgrstt- > plar,stht |. (AL.3)

Coqgrst q.r,s.t

= M(QS)T M(RS )+ M(RT)-M(QT)

Comparing (A1.2) and (A1.3) we obtain the Bell inequality,
M(QS)+M(RS)+M(RT)-M(QT )< 2. (AL.4)
This result is also often known as the CHSH inequality.

Itis a part of a larger set of inequalities known generically as Bell inequalities.

By repeating the experiment many times, Observers 1 and 2 can determine each quantity on the left
hand side of the Bell inequality. For example, after finishing a set of experiments, Observers 1 and 2 get

together to analyze their data. They look at all the experiments where Observer 1 measured P, and Observ-
er 2 measured Py . By multiplying the results of their experiments together, they get a sample of values for

QS . By averaging over this sample, they can estimate M (QS) to an accuracy only limited by the number

of experiments, which they perform. Similarly, they can estimate all the other quantities on the left hand side
of the Bell inequality, and thus check to see whether it is obeyed in a real experiment.

Example Al.4: Analysis of Bell inequalities. It’s time to put some quantum mechanics back in the pic-
ture. Imagine we perform the following quantum mechanical experiment. Observer 3 prepares a quantum
system of two qubits in the state

) = %Qog ~[10)). (AL5)

He pass the first qubit to Observer 1, and the second qubit to Observer 2. They perform measurements
of the following observables:

1
= S=—~(-7. -
Q=2, 502 Xz).

1
R=X, | T=(2,-X,)

Simple calculations show that the average values for these Observables, written in the quantum me-
chanical notation (-), are:

Q)= | (RS)= 5 | (RT)= 5 | (@T)= 5

Thus,

(QS)+(RS)+(RT)—(QT)=22. (AL6)

From Eq. (A1.4) we see that the average value of QS plus the average value of RS plus the average
value of RT minus the average value of QT can never exceed two. Yet here, quantum mechanics predicts

that this sum of averages yields 2.2

Example Al.5: Tsirelson’s inequality. Boris Tsirelson raised the question whether quantum theory im-
posed an upper limit to correlations between distant events (a limit which would of course be higher than the
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classical one, given by Bell’s inequality). Suppose Q=(G-0,R=F-5,5S=5-5,T =t -5, where ,r,§
and T are real unit vectors in three dimensions. In this case

(Q®S+R®S+ROT-Q®T) =41 +[Q,R]®[S,T}] (AL7)
For any two bounded operators A and B, we have general inequalities as

[[A B]|<lAB]+|BA| < 2[A] 8]
and therefore, in the present case, ||[Q R]| <2, ||[ST]| <2
It thus follows from Eq. (A1. 7) that H 41 +[Q,R]®[S,T] HZ <8 or

(QS)+(RS)+(RT)—(QT) <22 (ALS8)

This is Tsirelson’s inequality. Its right hand side is exactly equal to upper limit that can be attained by
the left hand side of CHSH inequality (A1.7). So the violation of the Bell inequality found in Eg. (A1.6) is
the maximum possible in quantum mechanics. Quantum theory does not allow any stronger violation of the
CHSH inequality than the one already achieved in Aspect’s experiment.

Clever experiments using photons — particles of light — have been done to check the prediction (AL.6)
of quantum mechanics versus the Bell inequality (Al.4) which we where led to by our common sense rea-
soning. The results of experiments were resoundingly in favor of the quantum mechanical prediction. The
Bell inequality (A1.4) is not obeyed by Nature.

Al.2. The Logical Backgrounds of Quantum Non-Locality and Hidden-Variable

Theory: Einstein — Podolsky — Rosen Paradox and Bell’s Inequalities

Consider some “elementary” events A, B,C,..., such as “the electron spin in the X —direction is up”,
as well as some of the joints of these propositions; e.g., AB, AC,..., ABC,.... In order to be consistently
interpretable, the probability of these events P(A),P(B),P(C),...,P(AB),P(AC),...,P(ABC),... must
satisfy some inequalities of the probability theory; for example:

P(A)+ P(B)-P(AB)<1 or P(A)—P(AB)-P(AC)+P(BC)>0. (AL.9)

These inequalities are satisfied for every possible classical probability distribution P These inequalities
are investigated in the middle of the 19th century George Boole and referred to them as conditions of possi-
ble experience.

Remark Al1.4.The number and complexity of the inequalities increase fast as the number of events
grows. Among them are the famous inequalities that arise in the Einstein-Podolsky-Rosen (EPR)-experiment
and its generalizations. In particular, Bell inequalities and Clauser-Horne (CH) inequalities (see, Section
Al.l).

Consider, for example, the Bell inequalities and its physical meaning. The logical and mathematical
formalism is described below.

Al1.2.1. Local realism, EPR-experiment and Bell inequalities (Simplified cases)

Local realism is a world view which holds that physical systems have local objective properties, inde-
pendent of observation. It implies constraints on the statistics of two widely separated systems. These con-
straints, known as of Bell inequalities, can be violated by quantum mechanics. The Clauser — Horne — Shi-
mony — Holt (CHSH) Bell inequalities applies to a pair of two-state systems and constraints the value of a
linear combination of four correlation functions between the two systems. Quantum mechanics violates the
CHSH inequality; the violation has been confirmed experimentally.

The essence of Bell inequalities is related to Einstein’s notion of “realism”: that an object has “objective
properties” whether they are measured or not. Bell inequalities, in their simplest form, reflect constraints on
the statistics of any three local properties of a collection of objects. Consider a set of objects, each character-
ized by three two-valued (or dichotomic) properties a,b, and c. Then, grouping the objects as a function
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n(.,.) of two (out of the three) properties (for instance grouping together objects having property a but no
b), it is easy to build a simple inequality relating the number of objects in various groups defined by differ-

ent pairs of properties. For example,

n(a,—b) < n(a, —¢)+n(-b.c). (A1.10)

While such an inequality only refers to the simultaneous specification of any pair of properties, its sat-
isfaction depends on the existence of a probability distribution for all three. Thus, even when the three
properties cannot be accessed at the same time (for whatever reason), Eq. (1) still holds provided that there
exists such an objective description of each object using three parameters a,b, and c; therefore, Eq.

(A1.10) provides a straightforward test of “local realism ” (i.e., the combination of objectivity and locality).
As confirmed experimentally [8], an equality such as Eq. (A1.10) can be violated in quantum mechanics. It
is the uncertainty principle (implying that the simultaneous perfect knowledge of two conjugate observables
is impossible), which is at the root of such a violation. Argument similar to those above are used to derive
the Bell inequalities and the Clauser-Horne-Shimony (CHCH) inequalities, and their violation can be traced
back to the nonexistence of an underlying joint probability distribution for incompatible variables [4].

Example AL6: Bell states. For all single qubit states |a) and |b) we have |/) =|a)|b). We say that a

state of a composite system having this property (that it can’t be written as a product of states of its compo-
nent system) is called an entangled state.

Let’s us consider slightly more complicated circuit, shown in Figure A1.2, which has a Hadamard gate
followed by a CNOT operation, and transforms the four computational basis states according to the table

given. As an explicit example, the Hadamard gate takes the input |00) to i(]O>+|1>)0>, and then the

J2

. 1 . .
CNOT gives the output state —QOO) + |11>). Note how this works: first, the Hadamard transform puts the

J2

top qubit in a superposition; this then acts as a control input to the CNOT, and the target gets inverted only
when the control is 1. The output states

Table Al.1: Bell states

o) == (00) 43 | ) == (00) ~[11)
) == (00)+10) | |8, =5 (01)-[10))

(A1.11)

are known as the Bell states, or sometimes the EPR states or EPR pairs, after the people — Bell, and
Einstein, Podolsky, and Rosen — who first pointed the strange properties of states like these. The mnemonic

notation | By, )| Boi):| Bro )| Bii) May be understood via the equations

‘ﬂxv>:

where —y is the negationof y, X,y € {0,1}.

1

J2

(0, y)+ (1)L —y).

(A1.12)
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In Out

00) | (00} +12)

03) | - (02) +}10))

10) | 5 (00}~ 21) v—{H

1) | lo-po)| ¢ |, e

Fig. Al1.2: Quantum circuit to create Bell states, and its input — output quantum “truth table”

Example AL.7: Anti — correlation in the EPR experiment. Suppose we prepare the two state
1

V)=—"1=
V=7
entangled state of the two qubit system. Suppose we perform a measurement of spin along the 9 axis on
both qubits, that is, we measure the observable J-& = Y0, +9,0, + 0, on each qubit, getting a result

QOl) —|10>), a state sometimes known as the spin-singlet for historical reasons. This state is an

of +1 or -1 for each qubit. It turns out that no matter what choice of ¢ we make, the result of the two meas-
urements are always opposite to one another. That is, if the measurement on the first qubit yields +1, then
the measurement on the second qubit will yield (1), and vice versa. It is as though the second qubit knows
the result of the measurement on the first, no matter how the first qubit is measured. To see why this is true,

suppose |a) and |b) are the eigenstates of 9. Then there exist complex numbers e, 3, 7,8 such that
|0)=c|a)+ B|b) and |1) = y|a)+ 5|b).

Substituting we obtain

)= 35 (08 -110)= (a0 pr}ab)-|ee) |

a
But (ad— f35) is the determinant of the unitary matrix {

g} , and thus is equal to a phase factor
v

e'’ for some real @. Thus |¢//>=%(|01>—|10>)

%(|ab>—|ba}) , up to an unobservable global

phase factor. As a result, if a measurement of -G is performed on both qubits, then we can see that a

result of +1 (- 1) on the first qubit implies a result of |-1 (+1)| on the second qubit, i.e., we are observed the
anti — correlation in the EPR experiment.

Example A1.8: Bell inequalities derivation. Consider two widely separated entangled systems in gen-

eral, more specifically, a pair of spin— > particles in singlet state (so-called Bohm’s version of EPR pair,

see, Table ALL): |B,) =|y)= i(j01>—|10>). Assume that an observer, acting independently on each

J2

particle, can measure the spin component of that particle along two possible orientations, for example with
Stern-Gerlach setup. Let the first observer either measure the z component of one of the particle (and call
this observable A and the outcome of the measurement a) or else the component along an axis making an
angle @ with the z axis (observable B, with outcome b). Correspondingly, the second observer measures
(on the second particle) either the z component (observable A") or else the component making an angle ¢
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with the z axis (observable C). Locality implies that the two distant observers have no influence on each
other, i.e., the decision to make one of the two possible measurements on the first particle does not effect the
outcome of the measurement on the other particle. Indeed, it is known that the marginal statistics of the
outcome of the spin measurement on the second particle, C for instance, is unchanged whether one measures

A or B on the first particle. Let us now outline a general derivation of conventional Bell inequalities
[1, 2]. Consider three dichotomic random variables A, B and C that represents properties of the system and

. - 1
can only take on the values (+1) or (—1) with equal probability (Ej For our purpose, they stand of course

for the measured spin components (either up or down along the chosen axis), i.e., the Bell variables. (As A’
is fully anticorrelated with A (see, Example A1.7), we do not make use of it.) any random set of outcomes
a,b,and ¢ must obey

ab+ac—bc<1 (A1.13)

along with the two corresponding equations obtained by cyclic permutation (a —->b— c). Indeed, the left-
hand side of Eq.(3) is equal to [+1] when [a] = [b], while it is equal to when [@] = [=b]. Taking the
average of Eq. (A1.13) and its permutations yields the three Bell inequalities:
(ab)+(ac)—(bc) | <1
(ab)—(ac)+(bc) | <1 (Al.14)
—(ab)+(ac) +(bc) | <1

relating the correlation coefficients between pairs of variables.

Two last equations in (Al.14) can be combined in the form of standard Bell inequalities:
(ab) —(ac)| + (bc) <1.

Remark A1.5. The important point is that inequalities (A1.14) involves only the simultaneous specifica-
tion of two (out of the three) random variables, although it is assumed that the three variables possess an
element of reality, i.e., they can in principle be known at the same time (even if not on practice). In other

words, it is assumed that there exists an underlying joint probability distribution P(a, b, C), in which case
the Bell inequalities (which depend only on the marginal probability P(a,b)=ZP(a,b,c) and cycle

permutation) must be satisfied. Therefore, the violation of any of the inequalities (A1.14) implies that a,b,
and C cannot derive from a joint distribution (i.e., cannot be described by any local hidden-variable theory).
In the following, we will show that the violation of Bell inequalities, while ruling out such a classical under-
lying description of local realism, still does not contradict a quantum one based on an underlying joint

density matrix p g, but forces the corresponding entropies to be negative.

Remark ALl.6. It is known that quantum mechanics cannot be reduced to any non-contextual hidden-
variable theories. This means that the probability space of outcomes of measurements changes according to
what is measured. A hidden-variable theory with such many probability spaces is often called a contextual
hidden-variable theory. In such a theory, we usually consider that the change of the probability space is due
to the interaction between the object and the measuring apparatus. Bell argues that in the EPR-Bohm
Gedankenexperiment, this interpretation leads us to an unacceptable conclusion. He insists that if the Bell
inequality is not satisfied, then there exists action - at - a distance in the EPR-Bohm Gedankenexperiment.
Several EPR-Bohm type experiments have already been performed since then and violations of Bell type
inequalities have been observed. As a result, it has been widely believed that quantum mechanics has a non —
local character such as action - at - a distance. It is hardly known, however, that several authors showed that
the violation of the Bell inequalities did not always mean existence of the “action - at - a distance ”, making
local models that violate the Bell inequalities.

Remark Al1.7. The Bell inequalities are written in terms of correlations between two-state systems. The
CHSH inequality tested in the most recent experiments [involves four guantities, two from each two-state
system, it constrains the value of a linear combination of the four measurable correlation functions of these
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guantities, and it follows from the assumption of a joint probability for the four quantities. Its violation by
two spln-E particles in a spin-singlet state reflects the tight correlation between the spins. The CHSH

inequality is thus closely analogous to the information Bell inequality (see, below Eq. (Al1.15)). For the
orientations considered above, however, the CHSH inequality is violated over a large range of angles than is
equality (A1,15). Thus the Bell inequality (A1.15) does not reveal all quantum behavior that is inconsistent
with local realism. This realization prompts us to consider what is that Bell inequalities test. A Bell inequali-
ty — whether for correlations or for information — is a consequence of our assuming a joint probability for a
set of measurable quantities. When quantum mechanics violates a Bell inequality, it means, strictly speak-
ing, only that the quantum statistics cannot be derived from such a joint probability. A Bell inequality is
transformed into a test of local realism by the argument that objectivity and realism ensure the existence and
relevance of the joint probability. Violation is thus interpreted as a conflict either with objectivity or with
locality.

Remark A1.8. If Bell inequalities arise from a joint probability, why not take a more direct approach?
Start with marginal probabilities predicted by quantum mechanics, and ask if they can be derived high-order
joint probabilities. This approach has been advocated by Garg and Mermin, who formulate it mathematically
and investigate it for pairs of spin-S systems for several values of S. The Garg-Mermin approach ferrets out
all the consequences of local realism for arbitrary systems, but it is not simple mathematically, nor does it
yield clear-cut constraints for experimental test. The CHSH inequality is simple to derive and has been
tested, but it does not test all the consequences of local realism, nor is it easy to generalize nontrivially to
other than two-state systems. Thus we see a role for information Bell inequalities: They do not get at all the
consequences of local realism, but they are simple to derive and applicable to arbitrary systems; as such,
they can be a useful tool for the comparison of quantum mechanics against the requirements of local realism

[5].

Conclusions

What does mean? It means that one or more of the assumptions that went into the derivation of the Bell
inequality must be incorrect. Vast tomes have been written analyzing the various forms in which this type of
argument can be made, and analyzing the subtly different assumptions, which must be made to reach Bell —
like inequalities. Here we merely summarize the main points.

There are two assumptions made in the proof of (A1.4) which are questionable:

(1) The assumption that the physical properties Fo: Pr:Ps. By have definite values @ RS T ,

which exist independent of observation. This is sometimes known as the assumption of realism.
(2) The assumption that Observer 1 performing his measurement does not influence the result of the
Observer’s 2 measurement. This is sometimes known as the assumption of locality.

These two assumptions together are known as the assumptions of local realism. They are certainly intu-
itively plausible assumptions about how the world works, and they fit our everyday experience. Yet the Bell
inequalities show that at least one of these assumptions is not correct.

What we can learn from Bell’s inequality? The most important lesson is that we deeply held com-
monsense intuitions about how the world works are wrong. The world is not locally realistic. Bell’s inequal-
ity together with substantial experimental evidence now points to the conclusion that either or both of locali-
ty and realism must be dropped from our view of the world if we are develop a food intuitive understanding
of quantum mechanics.

What lessons can the fields of quantum computation and quantum information learn from Bell’s ine-
quality? By throwing some entanglement into a problem we open up a new world of possibilities unimagi-
nable with classical information. The bigger picture is that Bell’s inequality teaches us that entanglement is a
fundamentally new resource in the world that goes essentially beyond classical resources; iron to the classi-
cal world’s bronze age.” A major task of quantum computation and quantum information is to exploit this
new resource to do information processing tasks impossible or much difficult with classical resources.
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