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Introduction 

The difference between classical and quantum algorithms (QA) is following: problem solved by QA is 

coded in the structure of the quantum operators. Input to QA in this case is always the same. Output of QA 

says which problem coded. In some sense, you give a function to QA to analyze and QA returns its property 

as an answer without quantitative computing. QA studies qualitative properties of the functions. The core of 

any QA is a set of unitary quantum operators or quantum gates. In practical representation, quantum gate is a 

unitary matrix with particular structure.  

The size of this matrix grows exponentially with an increase in the number of inputs, which significantly 

limits the QA simulation on a classic computer with von Neumann architecture. 

The presented article describes a practical approach to modeling one of the most famous QA on classical 

computers, the Grover algorithm. 

Models of quantum oracles and computational algorithm  

Grover’s search algorithm provides an example of the speed-up that would be offered by quantum 

computers (if and when they are built) and has the important application in solution of global optimization 

control problems. The problem solved by Grover’s algorithm is finding a sought-after («marked») element in 

an unsorted database (DB) of size N . To solve this problem, a classical computer would need 
2

N
 database 

queries on average, and in the worst case it would 1N −  queries. Using Grover’s algorithm, a quantum 

computer can find the marked state using only ( )O N  quantum data queries. In the case of M  «marked» 

elements in an unsorted DB of size N speed-up of quantum search process increase as 
N

O
M

 
  
 

. 

Related works and optimality of quantum searching  

Grover discovered a QA for identifying a target element in an unstructured DB search universe of N  

items in approximately 
4

N


 queries to a quantum oracle. For classical search using a classical oracle, the 

search complexity is clearly of order 
2

N
 queries since on average half of the items must be searched. It has 
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been proved that this square-root speed-up the best attainable performance gain by any QA. It work preceding 

Grover’s, Bennett et al. (1997) had shown that no QA can solve the search problem in fewer than ( )O N  

queries. Following Grover’s work, Boyer et al. (1998) showed that Grover’s algorithm is optimal 

asymptotically, and that square-root speed-up cannot be improved even if one allows, e.g., a 50% probability 

of error. Zalka (1999) strengthened these results to show that Grover’s algorithm is an optimal algorithm 

exactly (not only asymptotically). Consider an information-theoretic analysis of Grover’s algorithm and  the 

optimality of Grover’s algorithm from a point of view for application in design of robust intelligent control. 

The Grover’s algorithm has optimal order of complexity.  

 

Search problem for an unstructured DB  

Consider the problem of searching an unstructured DB of 
nN 2=  records for exactly one record, which 

has been specifically marked. This can be rephrased in mathematical terms as an oracle problem as follows. 

Label the records of the DB with the integers 0,1,2,..., 1N − , and denote the label of the unknown marked 

record by 0x . We are given an oracle, which computes the n-bit binary function    1,01,0: →
n

f , defined 

by 


 =

=
  otherwise.    ,0

  if    ,1
)(

0xx
xf . 

А standard oracle  no access to the internal workings of the function f. It operates simply as a black-box 

function, which we can query as many as we like. But with each such a query comes an associated 

computational cost. 

Search problem for an unstructured DB 

 Find the record labeled as x0 with the minimum amount of computational work, i.e., with the minimum 

number of queries of the oracle f. 

It is  known from  probability theory, that if k records are considered, i.e., if we calculate the oracle f for 

k randomly chosen records, then the probability of finding the record labeled as 0x  is
N

k
. Hence, on a classical 

computer it takes )2()( nONO =  queries to find the record labeled 0x . However, as Grover so astutely 

observed, on a quantum computer the search of an unstructured database can be accomplish in )( NO  steps, 

or more precisely, with the application of )lg( NNO  sufficiently local unitary transformations. Although 

this is not exponentially faster, it is a significant speed-up. 

Main steps of Grover’s search algorithm 

We assume without loss of generality that 2nN = , where n  is an integer. The algorithm requires of n  

qubits carrying the computation. When we say it is in a state x , we mean that its qubits are in states 

corresponding to the binary representation of the number x .  

Example. Consider the following problem:  

 

Input 

 

     1 20,1 , 0,1 , , 0,1Nx x x    such that exactly one ix  is 

1. 

 

Output The i  such that 1ix = . 
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Classically, one needs ( )N  queries to solve this problem and there is no better algorithm than the 

locations one by one until we find 1ix = . Surprisingly, there is a better algorithm in the quantum case (Grover, 

1996): There is a QA that solves Problem with ( )O N  queries. 

Qualitatively, Grover’s original quantum search algorithm (QSA) consists of the following steps: 

1) Initialize the register to 0H . That is, reset all qubits to 0 and apply the Hadamard transform to each 

of them; 

2)   Repeat the following operation (named the Grover iterate G) 
4

T N


=  times: 

(2.a) Rotate the marked state k  by a phase of   radians ( )kI  ; 

(2.b) Apply the Hadamard transform to the register; 

(2.c) Rotate the 0  state by a phase of   radians ( )0I


; 

(2.d) Apply the Hadamard transform again. 

Measure the resulting state. 

Remark. The original Grover’s iterate is 0 kQ HI HI = − . It has been generalized to 
†

s MQ UI U I = −  

where U  is an arbitrary unitary operator, s  is an arbitrary state, variables   and   are arbitrary angles, and 

M  includes any number of marked states. We have now observed that any unitary operation Q  has a unitary 

diagonalization. Therefore, it can be represented as 
†

MS
Q UI U I = − . This is a further generalization of 

Grover’s algorithm, where the state s  is replaced by a set of states S , each of which may have a different 

rotation angle. Thus, every iterative algorithm is a generalized Grover’s algorithm. 

According to abovementioned QSA in computation steps of this we must: 

1) Apply a unitary transformation U  mapping 0  to 
1

0

1 N

i

i
N

−

=

 ; 

2) Repeat for 
4

N
 
 
 

 times: 

✓ Apply the query transformation O  which maps 
1

0

N

i

i

a i
−

=

  to 

( )
1

0

1 i

N
x

i

i

a i
−

=

− ; 

✓ Apply the following «diffusion operator D » 

2 2 2
1 1 2

2 2 2
2 1 2

2 2 2
1 2

N
D N

N N N

N
D N

N N N

N
D N N

N N N

−
= − + + +


− = − + +





− = + + −


; 

3) Measure the state and output the result of the measurement. 
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Note that Grover’s QSA is efficient not just in the number of queries but also in the running time. The 

reason for that is that the diffusion operator D  can be implemented in ( )O logN  time steps. Therefore, the 

whole algorithm can be implemented in ( )O N logN . 

Example. Mathematical properties of quantum operations in QSA. Let 2  be a 2 dimensional Hilbert 

space with orthonormal basis  1,0 , and let the set  1,...,1,0 −N  denote the induced orthonormal 

basis in the Hilbert space 
1

2
0

N−

=  . From the quantum mechanical perspective, the oracle function f is given 

as a black-box transformation fU , i.e., by  

 

2 2

fU

 →   

yxfxyx
fU

→ )( , 

where «» denotes exclusive OR – XOR, i.e., addition modulo 2. 

 

Remark. Instead of fU , we will use below the computationally equivalent unitary transformation 





 =−

=−=
otherwise      ,    

   if     ,
)1()(

00)(

0 x

xxx
xxI xf

x . 

That 
0xI  is computationally equivalent to fU  follows from the easily verifiable fact that 













 −


2

10
xU f = ( )

2

10
)(

0

−
xI x , 

and also from the fact that fU  can be constructed from a controlled 
0xI  and two one qubit Hadamard 

transforms. 

We’ll try to understand why this QSA work follows the “inverse versus average” method.  

To understand the algorithm, plot the amplitudes of 1 , , N  at each step. After the first step, the state 

is 
1

0

1 N

i

i
N

−

=

  and the amplitudes are
1

N
. Figure 1.1 (a) shows this result.  
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Figure 1.1. Effects of D operation: (a) States before operation; (b) States after operation; (c) result of 

calculations 

After the first query, the amplitude of i  with 1ix =  becomes 
1

N

 
− 
 

.  

Figure 1.1 (b) shows this result. Then the diffusion operator D  is applied. Let 
1

0

N

i

i

a i
−

=

=  be the state 

before the action of D . Then, the state after the action of D  is 
1

0

N

i

i

a i
−

=

 = , where 

2 2
i i j

i j

N
a a a

N N

−
 = − + . We can rewrite this as 

1

2N

i i j

j

a a a
N=

 = − +  and 
1

2N

i i j

j

a a a
N=

 + = . Let 

1

1N

j

j

A a
N=

=  be the average of probability amplitudes ia . Thus, we have 2i ia a A + =  and, if ia A= +  , 

then ia A = −  . Therefore, the effect of the «diffusion transform» is that the every amplitude ia  is replaced 

by its reflection against the average of all ia .  

In particular, after the first query, the amplitude of i  with 1ix =  is 
1

N

 
− 
 

 and all the other 

amplitudes are 
1

N

 
 
 

. The average is 
1 2

N N N

 
− 

 
 which is almost

1

N
.  

Therefore, after applying D , the amplitude of i  with 1ix =  becomes almost 
3

N
 and the amplitudes 

of all other basis states j  slightly less than 
1

N
.  
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Figure 1.1 (c) shows this result of calculations. The next query makes the amplitude of i  with 1ix =  

approximately 
3

N

 
− 
 

. The average of all amplitudes is slightly less than 
1

N
 and reflecting against it 

makes the amplitudes of i  with 1ix =  approximately 
5

N

 
 
 

. 

Thus, each step increases the amplitude of i  with 1ix =  by 
1

O
N

 
 
 

 and decreases the other 

amplitudes. A precise calculation shows that, after 
4

N


 steps, the amplitude of i  with 1ix =  is ( )1 1o−  

Therefore, the measurement gives the correct answer with probability ( )1 1o− . 

Boyer et all (1998) have extended Grover’s QSA to the case when there can be more than one i  with 

1ix = . The simplest case if the number of 1ix =  is known. If there are k  such values, we can run the same 

algorithm with 
4

N

k

 
 
 

 iterations instead of 
4

N
 
 
 

. An analysis similar to one above shows that this 

gives a random i  such that 1ix =  with high probability.  

A more difficult case is if k  is not known in advance. The problem is that, after reaching the maximum, 

the amplitudes of i  with 1ix =  start to decrease. Therefore, if we do too many of iterations, we might not get 

the right answer. This problem can be handled in two ways. The first is running the algorithm above several 

times with a different number of steps. The second is invoking a different algorithm called «quantum counting» 

to estimate the number of 1ix =  and then choose the number of steps for the search algorithm based on that. 

Either of those approaches gives us solution to:  

 

Problem      1 20,1 , 0,1 , , 0,1Nx x x    

Output i  with 1ix = , if there is one, «none» if 0ix =  for all i  

Theorem 

(Boyer, 1998) 

There is an algorithm that solves the problem with 

( )O N  

 

Many problems can be solved by reductions to both problems mentioned above. For example, consider 

the satisfiability, which is the canonical NP-compete problem. We have a Boolean formula ( )1, , nF a a  and 

we have to find whether there exists a satisfying assignment      ( )1 20,1 , 0,1 , , 0,1Na a a    for 

which ( )1, , 1nF a a = . We can reduce the satisfiability to abovementioned Problem by setting 2nN =  and 

defining ( )1, , Nx x  to be ( )1, , nF a a  for 2nN =  possible assignments 

     ( )1 20,1 , 0,1 , , 0,1Na a a   . This means that we construct an algorithm that takes 1, , na a  and 

checks if ( )1, , 1nF a a = . Then, if we replace the black-box in the Grover’s QSA by this algorithm, we get 

an algorithm that find a satisfying assignment in the time ( )2 nO  times time needed to check one 

assignment. A similar reduction applies to any other problem that can be solved by checking all possibilities 

in some search space. 

Computational steps and physical interpretation of Grover’s QSA  

Suppose we have an unstructured DB with N  elements. Without loss of generality, suppose that the 

elements are numbers from 0 to 1N − . The elements are not ordered. Classically, we would test each element 



Сетевое научное издание «Системный анализ в науке и образовании»          Выпуск №1, 2020 год 

 

133 

at a time, until we hit the one searched for. This takes an average of 
2

N
 attempts and N  in the worst case, 

therefore the complexity is ( )O N . As we will see, using quantum mechanics only ( )O N  trials are needed. 

For simplicity, assume that 2nN = , for some integer n . Grover’s QSA has two registers: n  qubits in the first 

and one qubit in the second.  

The first step is to create a superposition of all 2 n
 is to create a superposition of all 2 n

 computational 

basis states  0 , , 2 1n −  of the first register. This is achieved in the following way. Initialize the first 

register in the state 00 0  and apply the operator
nH 
: 

( )

1

0

00 0

0

0 1

2

1

n

n

n

N

i

H

H

i
N

 





−

=

=

=

 + 
=  

 

= 
 

  is a superposition of all basis states with equal amplitudes of probability given by 
1

N
.  

The second register can begin with a state 1  and, after a Hadamard gate applied, it will be in state 

( )
1

0 1
2

− = − , now define    : 0, , 1 ,1f N − →  as a function, which recognizes the solution:  

( )
( )01,

0,

if i is the searched element i
f i

otherwise


= 


. 

This function is used in the classical algorithm. In the QA, let us assume that it is possible to build a linear 

unitary operator also dependent on , ,ff U  such that ( ) ( )fU i j i j f i=  . Operator fU  is called a 

quantum oracle and its physical meaning is described below. In the above equation, i  stands for a state of 

the first register, so i  is in the set  0, , 2 1n − , j  is a state of the second register, so j  is in  0,1 , and 

the sum is modulo 2. It is easy to check that 

( ) ( ) ( )

( ) ( )

( )
( )

1
0 1

2

1
1

2

1

f f f

f i

U i U i U i

i f i i f i

i

 − = − 

 = −  

= − −
 

In the last equation, we have used the fact that 

( ) 0

0

0,
1

1,

for i i
f i

for i i

=
 = 


. 
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Now look at what happens when we apply oracle operator fU  to the superposition state coming from the 

first step,  − . The state of the second register does not change. Let us call 
1  the resulting state of the 

first register: 

 

( )

( )
( )

1

1

0

1

0

1

1
1

f

N

f

i

N
f i

i

U

U i
N

i
N

 
−

=

−

=

− = −

= −

= − −





 

 

1  is a superposition of all basis elements, but the probability amplitude of the searching element is 

negative while all others are positive.  

The searched element has been marked with a minus sign. This result is obtained using a feature called 

quantum parallelism. At the quantum level, it is possible «to see» all DB elements simultaneously. The position 

of the searched element is known: it is the value of i  of the term with negative amplitude in last equation. This 

quantum information is not fully available at the classical level. The classical information of a quantum state 

is obtained by practical measurements, and, at this point, it does not help if we measure the state of the first 

register, because it is much more likely that we obtain a non-desired element, instead of the searched one. 

Before we can perform a measure, the next step should be to increase the amplitude of the searched element 

while decreasing the amplitude of the others. This is quite general: QA’s work by increasing the amplitude of 

the states, which carry the desired result. After that, a measurement will hit the solution with high probability. 

Many QA’s can be analyzed in a query (oracle) model where input is given by a block-box (that answers 

queries) and the complexity of the algorithm is measured by the number of queries to the black-box that it 

uses. 

Example: Query model. Most QA’s have operated in the so-called black-box setting (or DB– query 

model). In the black-box model, the input of the function f  what we want to compute can only be accessed 

by means of queries to a black- box. This returns the thi −  bit of the input when queried on i . In the query 

model, the input 1, , Nx x  is contained in a black-box and can be accessed by queries to the black-box. In 

each query, we give i  to the black-box and the black-box outputs ix . The goal is to solve the problem with 

the minimum number of queries. The classical version of this model is known as decision trees. There are two 

ways to define the query box in the quantum model. The first is an extension of the classical query.  

Figure 1.2 shows quantum black-box for this case.  

 

     In Out

       

       ?I

 

Figure 1.2. A black-box computing device 

It has two inputs i , consisting of log N    bits and b  consisting of 1 bit. If the input to the query box is 

a basis state i b , the output is ii b x . If the input is a superposition ,

,

i b

i b

a i b , the output is 

,

,

i b i

i b

a i b x . Notice that this definition applies both to the case when the values of ix are binary and to 
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the case when they are k −valued. In the k −valued case, we just make b  consist of 
2log k    bits and take 

ib x  to be bit-wise XOR of b  and ix . 

The second form of quantum query (which only applies to problem with  0,1 − valued ix ), the black-

box has just one input i . If the input is a state 
i

i

a i , the output is ( )1 ix

i

i

a i− . While this form is less 

intuitive, it is very convenient for use in QA’s, including Grover’s QSA. 

For this case, we assume the first form as our main definition but use the second when describing Grover’s 

QSA. This is possible to do because a query of the second type can be simulated by a query of the first type. 

Conversely, an oracle of the first type can be simulated by a generalization of the sign oracle, which receives 

,i b

i

a i b  as an input and outputs: ( )1 ib x

i

i

a i b


− . A quantum query model algorithm with T  

queries is just a sequence of unitary transforms 0 1 1T TU O U O U O U−→ → → → → →  on some finite-

dimensional space ,k
 0 1 1, , ,T TU U U U−  can be any unitary transformations that do not depend on the bits 

1, , Nx x  inside the black-box. O ’s are query transformations that consist of applying the black-box to the 

first log 1N +  bits of the state. That is, we represent basis states of 
k

 as , ,i b z . Then, O  maps , ,i b z  

to , ,ii b x z . We use xO  to denote the query transformation corresponding to an input ( )1, , Nx x x= .  

The computation starts with the state 0 . Then, we apply 0 , , , ,x x TU O O U  and measure the final state. 

The result of the computation is the right most bit of the state obtained by the measurement (or several bits if 

we are considering a problem where the answer has more than 2 values). The QA computes a function 

( )1, , Nf x x  if, for every ( )1, , Nx x x=  for which f  is defined, the probability that the rightmost bit of 

1 0 0T x T xU O U O U−  equals ( )1, , Nf x x  is at least 1 −  for some fixed 
1

2
  . The query complexity 

of f  is the smallest number of queries used by a QA that computes f . We denote it by ( )Q f . 

Let us consider now more in detail the quantum oracle models that in quantum computation are used. 

Quantum oracle model 

The Grover’s QSA solves the unstructured search problem, under the assumption that there exists a 

computational oracle that can decide whether a candidate solution is the true solution. 

Types and relations between oracle models. The following oracles defined in Table 1.1 for a general 

function    : 0,1 0,1
m n

f → . 

Table 1.1. Oracles functions 

Number Title of oracle Type Definition 

1 
The phase 

oracle  
 

2 
The standard 

oracle   

3 
The minimal 

oracle   

 

Here x  and b  are strings of m  and n  bits respectively, x  and b  the corresponding computational 

basis states, and   is addition modulo 2n
. The oracles fP  and fS  are equivalent in power: a quantum circuit 

containing just one copy of the other can construct each of the oracle.  

fP
( )2

exp
2n

if x b
x b x b

  
→  

 

fS ( )x b x b f x→ 

fM ( )x f x→
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If we take m n=  and suppose we know f  is a permutation on the set  0,1
n

 then fM  is a simple 

invertible quantum map associated to f . 

Example: Each oracle is simulating the other. One way round turns out to be simple. We can construct 

fS  from fM  and ( ) 1

1

f f
M M −

−

=  as follows: ( ) ( )1f ff
S M I A M I−=   , where « » represents the 

decomposition of operations (or concatenation of networks) and the modulo N adder A is defined by A: 

a b a a b →   . Thus, a standard oracle can be simulated given a minimal oracle, using just two 

invocations, one of fM  and one of ( )
1

fM
−

. However, the converse is not true: simulating a minimal oracle 

fM  requires exponentially many uses of the standard oracle fS . First, consider the standard oracle 1f
S −  

which maps a bits state y b  to 
1( )y b f y− , since 1f

S − : ( )10y y f y−→ , simulating it allows 

us to solve the search problem of identifying ( )1f y−
 from a DB of N elements. It is known that, using 

Grover’s search algorithm, one can simulate 1f
S −  with ( )O N  invocations of fS . 

Example. In the following example we explain one possible way of doing that. Prepare the state 

0 0 0y , where first three registers consist of n qubits and the last register is a single qubit. Apply 

Hadamard transformations on the second register to get 1 0 0 .
nx Z

y x


 =   Invoking fS  on the second 

and third registers new gives ( ) 0
Nx Z

y x f x


 
 
 
 . Using CNOT gates, compare the first and third registers 

and put the result in the fourth, obtaining ( )
( )

( )
1

10 1

Nx Z x f y

y x f x y f y y
−

−

 

 
 +   

  
 .  

Now apply ( )
1

fS
−

 on the second and third registers, obtaining  

( )

( )( )
1

1

,

0 0 0 1

Nx Z x f y

y x y f y
−

−

 

 
+ 

 
 

 . 

Taken together, these operations leave the first and third registers unchanged, while their action on the 

second and fourth defines an oracle for the search problem. Applying Grover’s algorithm to this oracle, we 

obtain the state ( )1y f y−
 after ( )O N  invocations. 

The oracle model 

Suppose we are supplied with a model oracle – a black-box whose internal workings we discuss later, but 

which are not important at this stage – with the ability to recognize solutions to the search problem. This 

recognition is signaled by making use of an oracle qubit. More precisely, the oracle is a unitary operator, O , 

defined by its action on the computational basis: ( )Ox q x q f x⎯⎯→  , where x  is the index register, 

  denotes addition modulo 2, and the oracle qubit q  is a single qubit which flipped if ( ) 1f x = , and is 

unchanged otherwise. We can check whether x  is a solution to our search problem by preparing 0x , 

applying the oracle, and checking to see if the qubit has been flipped to 1 . In the QSA it is useful to apply 

qubit initially in the state ( )
1

0 1
2

− , just as was done in the Deutsch – Jozsa algorithm. If x  is not a 

solution to the search problem, applying the oracle to the state  ( )
1

0 1
2

x −  does not change the state.  
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On the other hand, if x  is a solution to the search problem, then 0  and 1  are interchanged by the 

action of the oracle, giving a final state  

( )
1

0 1
2

x
 
− − 
   

The action of the oracle is thus:  

( ) ( )
( ) ( )

1 1
0 1 1 0 1

2 2

f xO

Oracle qubit Oracle qubit

x x
   

− ⎯⎯→ − −   
   

 

 Notice that the state of the oracle qubit is not changed. It turns out that this remains ( )
1

0 1
2

−  

throughout the QSA, and can therefore be omitted from further discussion of the algorithm, simplifying the 

description. With this convention, the action of the oracle may be written: ( )
( )

1
f xOx x⎯⎯→ − . 

We say that the oracle marks the solutions to the search problem, by shifting the phase of the solution. 

For any N  item search problem with M solutions, it turns out that we need only apply the search oracle 

N
O

M

 
  
 

 times in order to obtain a solution, on a quantum computer. 

It seems as though the oracle already knows the answer to the search problem. Question is what possible 

use could it be to have a QSA based upon such oracle consultants? The answer is that there is a distinction 

between knowing the solution to a search problem, and being able to recognize the solution; the crucial point 

is that it is possible to do the latter without necessarily being able to do the former.  

 When we say that one item in search space is marked it’s means is given a «black- box» or «oracle» 

which has the ability to identify a solution to the search problem when it sees a solution. More precisely, we 

have in our possession two registers. The first register stores the index x  to an element in the search space, 

while the second register is a single state z . Supposing s  is the marked item then the oracle has the effect: 

sxx z x z →  .  

Thus, the oracle «recognized» solutions to the search problem, in the sense that it flips the second register 

when it finds the solution to the problem in the first register. It’s means that the oracle does not know the 

identity of the state it is searching for, but rather can recognize the solution when sees it.  

Before describing the steps of the algorithm it’s actually very useful to notice two things. First imagine 

that we prepare the first register in the state x  and the second register in the superposition 0 1− . Then 

the effect of the oracle will be as follows: ( ) ( ) ( )0 1 1 0 1sxx x


− → − − . 

Notice, that the state of the second register is left alone by this operation; henceforth we will ignore the 

state of the second register, and just write the action of the oracle as ( )1 sxx x


→ − . 

In a similar way it’s useful for us to be able to perform an operation which leaves the state of our register 

x  alone unless it is in the all zero state, in which case a phase shift of ( )1−  is applied. The computational 

complexity of the function f  is measured by the required number of queries. In this setting we want QA that 

use significantly fewer queries than the best classical algorithms.  

Our purpose is to find the «target» y  with the smallest possible number of the oracle evaluations, called 

the query complexity. Remarkable, there is a QSA, which enables this search method to be speed-up 

substantial, requiring only ( )NO  operations. 

. 

. 
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Elementary probability theory shows that classically if we examine k records then we have probability 

k/N of finding the special one, so we need O (N) such trials to find it with any constant (independent of N) 

level of probability. Grover’s quantum algorithm achieves this result with only )( NO steps (or more 

precisely )( NO  iterations of Grover’s operator G  but )log( NNO  steps, the Nlog  term coming 

from the implementation of H ). It may be shown (Zalka, 1997) that the square root speedup of Grover’s 

algorithm is optimal within the context of quantum computation. 

In Grover’s QSA, the N  inputs are mapped onto the states of n  qubits. The Grover’s QSA is optimal 

exactly, and not only asymptotically, optimal for query complexity if quantum computation consists only of 

unitary transformations with fixed structures and the final measurement.  

The quantum problem thus becomes one of maximizing the overlap between the state of these n  qubits 

and the target state y . This is equivalent to maximizing the probability of obtaining the desired state upon 

measurement. The initial state of these qubits is taken to be an equal superposition of all possible bit stings. 

The Grover operator, which is used repeatedly in the algorithm, corresponds to a small rotation in the two-

dimensional subspace spanned by the initial and target states. Each such rotation requires a single evaluation 

of ( )xf . Thus, unlike a classical search, the quantum search monotonically rotates the state towards the target.  

Now  the circuit for Grover’s QSA  

We shall work out the details by introducing the circuit for Grover’s QSA and analyzing it step by step. 

Figure 1.3 shows the circuit for Grover’s QSA.  

 

Figure 1.3. Outline of Grover’s algorithm 

The unitary operator G  is applied ( )O N  times. The exact number will be obtained later on. The circuit 

for one Grover iteration G  is given in Fig. 1.4. 

The states   and 1  are given above. The operator 2 I  −  is called inversion about the mean 

for reasons that will be clear below. We will also show how each Grover operator raises the amplitude of the 

searching element: 1  can be rewritten as 1 0

2

2n
i = − , where 0i  is the searching element. 0i  

is a state of computational basis. Note that 0

1

2n
i = .  

Let us calculate G  in Fig. 1.4. Using the abovementioned approach and two last expressions for 1  

and 0i , we obtain 
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Figure 1.4. One Grover iteration (G)  

The states of the first register correspond to the first iteration 

 

( ) 1

2

02

2

2 1 2

2 2

G

n

n n

I

i

   


−

−

= −

−
= +

 
 

This is the state of first register after one application of G ; the second register is in the state − . This 

allows a nice geometrical representation taking 0i  and   as base vectors (non-orthogonal basis).  

Figure 1.5 shows the vectors 0i  and  .  

 

 

Figure 1.5. The state of the first register lives in the real vector space spanned by 0i  and   

We take these states as a basis to describe what happens in Grover’s algorithm. They form an angle smaller 

than 
090  as can be seen from the relation 0

1

2n
i = , since 00 1i  . If n  is large, then the angle 

is nearly 
090 . We can think that   is the initial state of the first register, and the steps of the computation 

are the applications of the unitary operators fU  and 2 I  − . Then   will rotate in the real plane 

spanned by   and 0i , keeping the unit norm. This means that the tip of  ’s vector lies in the unit circle. 

From the expressions for 1  and 0i  we see that   rotates   degrees clockwise, where 

1

1
cos 1

2 n


−
= − .  
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Figure 1.5 shows the position of vector 
1  in the unit circle. From the expressions similar to 0i  

we see that the angle between 
G  and   is 

1

1
cos 1

2
G n

  
−

 = = − . So,   =  and 
1  rotates 

2  degrees counterclockwise (in the direction of 
0i ). Figure 1.6 explains also the placement of 

G .  

 

 

Figure 1.6. A generic vector 0i  is reflected around the horizontal axis by the application of Uf , yielding 

1   

Then, the reflection of 
1  about the mean   gives G  , which is   degrees closer to 

0i  (vertical 

axis). This is remarkable result, since the resulting action of ( )2 fG I U = −  rotates   towards 0i  

by   degrees. This means that the amplitudes of 0i  in G  increased and the amplitudes of i , 0i i , 

decreased with respect to their original values in  . A measurement, at this point, will return 0i  more 

likely than before. But it is not enough in general, since   is a small angle if 1n  while 
1

1
cos 1

2 n


−
= − . 

That is why we need to apply G  repeatedly, ending up   degrees closer to 0i  each time, until the state of 

the first register be very close to 0i , so we can measure. 

Computation in Grover’s quantum gate and geometrical interpretation of simulation results for 

N=8 

 We will describe Grover’s QSA for search space of 8 elements for an unknown record with the unknown 

label x0 = 5. If 8N =  then number of input qubit is 
33, 2 8n = = . There are 3 qubits in the first register and 

1 qubit in the second register. For 8N = , the operator G  will be applied two times as we will see from 

estimation 
4

N
 
 
 

. Figure 1.7 shows the circuit in this case.  

 

Figure 1.7. Grover’s algorithm for N = 8 
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Classically, an average of more than 4 queries are needed in order to have a probability of success of more 

than
1

2
.  

1. We are given a black-box computing device (see Fig. 1.2) that implements as an oracle the unknown 

unitary transformation 

50
IIU xf ==

 = 

































−

10000000

01000000

00100000

00010000

00001000

00000100

00000010

00000001

. 

We cannot open the black-box in Fig. 1.2 to see what is inside. So we do not know what 
0xI  and 0x  

are. The only way that we can glean some information about 0x  is to apply some chosen state   as input, 

and then make use of the resulting output. Using of the black-box in Fig. 1.2 as a component device, we 

construct a computing quantum gate, which implements the unitary operator 

00 xHIHIQ −=  = 

































−−

−−

−−

−−

−−

−−

−−

31111111

13111111

11311111

11131111

11113111

11111311

11111131

11111113

4

1
 

 

We do not know what unitary transformation Q is implemented by the quantum gate because the black-

box is one of its essential components. We can compute the state 5  in standard Grover’s QSA as following. 

STEP 0: We begin by preparing the known state (superposition) 

transposeH )1,1,1,1,1,1,1,1(
8

1
00 ==

 

STEP 1: We proceed to loop 
1

1 1
) 2

2 24sin (1/ 8)
K round


−

 
= − − = 

 
 times in STEP 1. 

Iteration 1. On the first iteration, we obtain the unknown state (entanglement state) 

transposeQ )1,1,1,5,1,1,1,1(
24

1
01 ==

 

Iteration 2: On the second iteration, we obtain the unknown state (interference mode) 
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transposeQ )1,1,1,11 ,1,1,1,1(
24

1
12 −−−−−−−==

 

and branch to STEP 2. 

STEP 2: We measure the unknown state 2  to obtain either 5  with probability  

 2 121
sin (2 1) 0.9453

128
successProb K = + = =

 

or some other state with probability 

 2 7
cos (2 1) 0.0547

128
failureProb K = + = =

 

and then exit. 

2. Let us describe the quantum computation process state at each step shown in the circuit in Fig. 1.7 as 

following: ( )0 1 2 3 fand     → → → → . 

(1) The initial state is 0 000 = ; 

(2)  After Hadamard gates, ( )
7

33

0

1
000 0

2 2 i

H H i


=

= = =  ; 

 Suppose that we are searching for the element with index 5.  

(3)  Since 5 101= , 

( )

( )

101 101 , 5

101 , 5

f

f

U for i

U i if i

− = − − =

− = − 
 

Define u  as  

7

0, 5

000 001 010 011 100 110 1111
7

7 7i i

u
= 

+ + + + + +
= =

 

Then 

7 1
101

2 2 2 2
u = +

 

With this result, we can see the direction of  .  

Figure 1.8 shows this direction of  .  

 

 

. 

; 

. 

. 
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Figure 1.8. Intermediate states in Grover’s algorithm for N = 8 

The value of   is  

0

7
2arccos

2 2

3
arccos

4

41,4


 

=   
 

 
=  

 


 

Notice how close is f  to 101 , indicating a high probability that a measurement will give the searched 

element. The value of  is around 41.4o. 

(4) The next step is 

( )1

000 001 010 011 100 101 110 111

2 2
fU 

 + + + + − + + 
− = − = − 

   

Note that 101  is the only with a minus sign. We can write 1  as  

1

1
101

2
 = − or 1

7 1
101

2 2 2
u = −  

The form of last two equations is useful in the next step of calculation since we have to apply 

( )2 I  − . The form in last equation is useful to draw the geometrical state 1 .  

Figure 1.8 shows the state 1 . 1  is the reflection of   with respect to u . 

Next step is the calculation ( )2 12 I   = − . Using the last expressions for 1 , we get 

2

1 1
101

2 2
 = +  and, using the last expression for  , 2

7 5
101

4 2 4 2
u = + . 

 Let us conform that the angle between   and 2  is  :  

2

1 1 3
cos 101

2 42
     = = + =

 

. 

. 

, 
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 which agrees with the above expression of  . This completes one application of G . 

(5) The second and last application of G  is similar. 
3  is given by 

3

7 5
101

2 2 4 2
u = −

 

Using 
7 1

101
2 2 2 2

u = + , we have 
3

1 3
101

2 2 2
 = − . 

 
3  is the reflection of 

2  with respect to u . 

(6)  The last step is 

( ) 32f I   = −
 

Using 
7 1

101
2 2 2 2

u = +  and 
3

1 3
101

2 2 2
 = − , we have 

7 11
101

8 2 8 2
f u = +

 

 It is easy to conform that f  and 
2  form an angle  . Note that the amplitude of the state 101  is 

much bigger than the amplitude of any other state i  ( )5i   in last expression for f . This is the way 

most QA work. They increase the amplitude of the states that carry the desired information. A measurement 

of the state f  in the computational basis will project it into the state 101  in the computational basis with 

probability 

2
11

0.9453
8 2

p =  . The chance of getting the result 101 , which reads as number 5, is around 

94,5% . 

Generalization of computational process in QSA  

The easiest way to calculate the output of Grover’s QSA is to consider only the action of G  instead of 

breaking the calculation into action of the oracle fU  and the inversion about the mean. To this end, we choose 

0i  and u  as the basis for the subspace where   rotates after successive applications of G . 0i  is the 

searched state and u  is defined from the above expression in general form as 

0

1

0

0,

1 1

11 1

N

i i i

N
u i i

NN N


−

= 

= = −
−− −


 

From the first expression above we easily see that 0 0i u = , i.e., 0i  and u  are orthogonal. From the 

second equation we have 0

1 1
1 u i

N N
 = − + . The state of the quantum computing at each step is 

0

2 1 2 1
cos sin

2 2

k k k
G u i  

+ +   
= +   

   
, where we have dropped the state of the second register it 

is −  all the time. Figure 1.9 shows effect of G  on  . 

. 

. 

. 

. 
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The above last equation is obtained after analyzing the components of 
kG  . The value of   is obtained 

substituting k  for 0 in last expression and comparing it above with two last equations, 
1

2arccos 1
N

 = −

The equation for 
kG   expresses the fact (we proved above), that each application of G  rotates the state of 

the first register by   degrees towards 
0i . Figure 1.9 shows successive applications of G .  

 

 

Figure 1.9. Effect of G on   

The number of times 0k  that G  must be applied obeys the equation 0
2 2

k
 

 + = . Since 0k  must be 

integer, we write 0
2

k round
 



− 
=  

 
, where   is define from above equation 

1
2arccos 1

N
 = − . If 

1N , by Tailor expanding this last equation, we get 
2

N
   and from the expression for 

0
2

k round
 



− 
=  

 
, and we have 0

4
k round N

 
=  

 
. After applying 0k  times the operator G , the 

probability p  of finding the desired element (after a measurements) is 
2 02 1

sin
2

k
p 

+ 
=  

 
. 

Probability of successful result of quantum search  

Figure 1.10 shows the evolution value of probability p  of finding the desired element (after 

measurements) for n  form 2 to 30.  

Recall that, so for 30n =  the search space has around one billion elements. For 2n =  the probability of 

getting, the result is exactly 1. The reason for this case is that the equation for   is 
1

2arccos 1
N

 = −  and 

yields 
3


 = . And   makes an angle 

6


 =  with u . 
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Figure 1.10. Probability of succeeding as a function of n 

Applying G  one times rotates   to 
0i  exactly. For 2n = , from 

2 02 1
sin

2

k
p 

+ 
=  

 
 yields 

0,9453p   which is the result that described above. 

Simulation of Grover’s Quantum Search Algorithm – Gate-based Approach 

Background. We receive Xk by making a query with the index k. We call such a query a classical query. 

On quantum computers, the index associated with a query is expressed with qubits, and thus a query, in this 

case called a quantum query, will be a superposition of classical queries over all indices k ranging from 1 to 

N; accordingly, the answer to the quantum query will be the corresponding superposition of all Xk, where k 

ranges from 1 to N. With the ability to make quantum queries, the quantum search may be stated as follows 

(we assume for simplicity that each piece of input data is either 0 or 1, but this is not essential to the quantum 

search). Any classical algorithm for finding an item in a randomly ordered phone book (whether deterministic 

or probabilistic) requires N/2 steps on the average, because the only way to perform the search is to analyze 

each item one by one until the searched-for item is found. Recently, Grover invented a quantum algorithm that 

runs like ( )O N .  

Theorem (Quantum Search) Given N input data X1,…, XN ∈ {0,1}, there exists a quantum algorithm that 

finds an index i with Xi = 1 with high probability by making approximately N data accesses (i.e., quantum 

queries). 

To estimate the total number of steps required to solve a problem, it is necessary to count the number of 

steps taken to process the input data obtained via queries, as well as the number of accesses to the input data. 

However, we will focus only on the number of accesses to the input data, since it is a dominant factor in the 

search problem and the other problems dealt with in this article. 

Let us review it briefly. In a phone book with 2
n

N = entries, each item can be represented by a binary 

label of length n or, equivalently, by a pure state of n spin ½ particles. The algorithm is based on constructing 

a coherent superposition of all these states, and applying repeatedly certain unitary transformations to it. 

Assume, for concreteness, that the item we are looking for is represented by the state ...  , i.e. by n spin-

down particles. 



Сетевое научное издание «Системный анализ в науке и образовании»          Выпуск №1, 2020 год 

 

147 

The algorithm works via the repeated action of the unitary steps below, starting from an initial state 

which we take to be the full coherent superposition of all states in the system, namely                                                           

0

1

11

1

.
N

 =

 
 
 
 
 
 

 

Of course, one could start equally well with some other initial state. The two unitary steps to be repeated 

are the following: Invert the phase of the looked-for state trough the unitary transformation                                               

1

1 0 ... 0

0 1 0
.

0 0

0 0 ... 1

U

− 
 
 =
 
 
 

 

Invert, with respect to the average, the phase of the looked-for state trough the unitary diffusion matrix                                                     

2

2
( ) .ij ijU

N
= −

 

These two steps are equivalent to the action of the following single unitary transformation: 

2 1

2
1 1 ... 1

2
1 1 12

.

1 1

2
1 1 ... 1

N

U N
N

N

U U

− +

− −
=

−

=

−

 
 
 
 
 
 
 
 
 
 

 

When the unitary transformation U has been applied m times to the initial state 0 , the new quantum 

state will be 

             m
=

mU 0
=

m

m

A

B

 
 
 
 
 

. 

The action of U on the initial state 0  yields only two distinct amplitudes mA  and mB , whereby it is 

possible to recast the recursion relation in just two dimensions. The restriction of U to this two-dimensional 

subspace will be denoted by S. Explicitly, the amplitudes mA  and mB  are given by the recursion formula 

       
1

1

m

m

A

B

+

+

 
 
 

=

2 2
1 2

2 2
1

m

m

AN N

B

N N

− −

−
−

 
  
  

   
 

=
1

1

1
.

m m

m

A N
S S

B

N

+

 
  
 = 
  
 
 

 

The two-dimensional matrix S has eigenvalues 
ie , with 

1
cos 1

N
 = − , whereby 

mA =
1

(cos 1sin )m N m
N

 + − ,                                  
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mB
=

1 1
(cos sin )

1
m m

N N
 −

−
. 

The probability of finding the state we are looking for if we measure m  is thus 

( )P m =
2

Am =
21

(cos 1sin )m N m
N

 + −  

With the change of variables 2 = , ( )P m  can be written as ( )P m =
2

sin ( (2 1))m + .                                          

Clearly, ( )P m  is periodic, with maxima at (2 1)m n + = , where n is integer. 

The first maximum for large N is approximately at max
4

N
m


    and max max 1( )P P m = . The number 

of steps required to find the state with almost certainty scales like N , as shown is upper. 

The Grover search algorithm has four stages: initialization, oracle, amplification, and measurement, as 

shown in Fig. 1.11a.  

On Fig. 1.11 the initialization stage creates an equal superposition of all possible input states, so the 

amplitude 1x =  for all basis states |x〉. The oracle stage marks the desired state, so the amplitude m  of the 

marked state |m〉 becomes negative while the amplitudes αb of the unmarked states |b〉, b ≠ m remains 

unchanged. The amplification stage performs a reflection about the mean vector 
1

0

N

x
x

−

=  which has 

amplitude ( )( )
1

00

1 1
1

N

x mx
A N

N N
  

−

=
= = −− + , to amplify the marked state. An appropriate number of 

repetitions of the oracle and amplification stages will maximize the amplitude of the correct answer. All qubit 

states are normalized by the factor 
1

N
. The algorithm can also be generalized to mark and amplify the 

amplitude of t desired states. On Fig. 1.11b general circuit diagram for a Grover search algorithm using a 

Boolean oracle, depicted using standard quantum circuit diagram notation. The last qubit qa is the ancilla qubit. 

On Fig. 1.11c example of single-solution Boolean oracle marking the |011〉 state. On Fig. 1.11d general circuit 

diagram for a Grover search algorithm using a phase oracle. On Fig. 1.11e example of two-solution phase 

oracle marking the |011〉 and |101〉 states. 

 

. 
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Fig. 1.11. The Grover search algorithm. a Evolution of relative amplitudes for each state during a Grover 

search algorithm 

The initialization stage creates an equal superposition of all states. The oracle stage marks the solution(s) 

by flipping the sign of that state’s amplitude. The amplification stage performs a reflection about the mean, 

thus increasing the amplitude of the marked state. Finally, the algorithm output is measured. For a search 

database of size N, the single-shot probability of measuring the correct answer is maximized to near-unity by 

repeating the oracle and amplification stages ( )O N  times. By comparison, a classical search algorithm will 

get the correct answer after an average of N/2 queries of the oracle.  

For large databases, this quadratic speedup represents a significant advantage for quantum computers. All 

searches are performed with a single iteration. For a single-solution algorithm (t = 1), the algorithmic 

probability of measuring the correct state after one iteration is  

( )
2

22 1 5
78.125%,

4 2

N tN t
t

N N N

−−
+ = =

    
         

3, 2 8
n

n N= = = , 

compared to 
1 7 1

25%
1 8 8 7

t N t t

N N N

−
+ = + =

−
 for the optimal classical search strategy, which consists of a 

single query followed by a random guess in the event the query failed. In the two-solution case (t = 2), where 

two states are marked as correct answers during the oracle stage and both states’ amplitudes are amplified in 

the algorithm’s amplification stage, the probability of measuring one of the two correct answers is 100% for 

the quantum case, as compared to 
13

46.4%
28

  for the classical case. The algorithm is performed with both a 

phase oracle, which has been previously demonstrated on other experimental systems, and a Boolean oracle, 

which requires more resources but is directly comparable to a classical search. All quantum solutions are shown 

to outperform their classical counterparts. 

The Grover search algorithm is implemented using circuits that are equivalent to those shown in Fig. 

1.11b, d, but with the initialization and amplification stages optimized to minimize gate times. The circuits 

shown are for use with Boolean oracles; in the phase oracle case, the ancilla qubit qa is simply omitted. To 
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preserve the modularity of the algorithm, the initialization stage and amplification stage were each optimized 

without regard to the contents of the oracle, so each possible oracle can simply be inserted into the algorithm 

without making any changes to the other stages. 

Oracles for the Grover search algorithm were constructed using a combination of reversible and classical 

logic synthesis techniques. For Boolean oracles, reversible logic synthesis was employed to find a set of X, 

CN(NOT) gates that marked the desired state(s) for each oracle. For phase oracles, EXOR polynomial synthesis 

was used to find a set of Z, CN(Z) gates that marked the desired state(s) for each oracle. For example, for 

Boolean oracles, the selection was limited to the classically available X (or NOT) and CN(NOT) gates, and a 

reversible circuit was constructed such that the output bit (corresponding to the ancilla qubit in the quantum 

oracle) would be flipped if and only if a marked state was used as the input to the circuit. 

While there are many possible circuit constructions for each oracle, the oracle chosen for implementation 

was one that first minimized the number of two-qubit interactions required, and then minimized the number of 

single-qubit interactions needed. Other quantum algorithms may be implemented on this system in a similar 

fashion.  

First, decompose the algorithm’s subroutines into high-level circuits. Second, optimize those circuits to 

minimize the number of two-qubit interactions required. Third, decompose the high-level circuits into 

physical-level R and XX gates. Finally, perform further optimizations to first minimize the number of two qubit 

XX gates required, and then to minimize the total rotation time (the sum of all rotation angles θ) across all R 

gates. However, since the optimization of quantum circuits is QMA-Hard, we anticipate that future 

improvements in algorithm design, circuit synthesis, and circuit optimization techniques may result in more 

efficient circuit implementations, facilitating increased experimental performance. 

Conclusion 

The article describes quantum oracle models and a computational algorithm. Is being discussed optimality 

of quantum search. The search problem in an unstructured database is considered and described basic 

computational steps, physical interpretation of the Grover algorithm and the probability of a successful 

quantum search result. 

The mathematical model, the features of the derivation of the Grover quantum search algorithm and 

classical efficient modeling using this algorithm will be discussed in future articles. 
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